2,770 research outputs found

    Brain-Switches for Asynchronous Brain−Computer Interfaces: A Systematic Review

    Get PDF
    A brain–computer interface (BCI) has been extensively studied to develop a novel communication system for disabled people using their brain activities. An asynchronous BCI system is more realistic and practical than a synchronous BCI system, in that, BCI commands can be generated whenever the user wants. However, the relatively low performance of an asynchronous BCI system is problematic because redundant BCI commands are required to correct false-positive operations. To significantly reduce the number of false-positive operations of an asynchronous BCI system, a two-step approach has been proposed using a brain-switch that first determines whether the user wants to use an asynchronous BCI system before the operation of the asynchronous BCI system. This study presents a systematic review of the state-of-the-art brain-switch techniques and future research directions. To this end, we reviewed brain-switch research articles published from 2000 to 2019 in terms of their (a) neuroimaging modality, (b) paradigm, (c) operation algorithm, and (d) performance

    Speech Processes for Brain-Computer Interfaces

    Get PDF
    Speech interfaces have become widely used and are integrated in many applications and devices. However, speech interfaces require the user to produce intelligible speech, which might be hindered by loud environments, concern to bother bystanders or the general in- ability to produce speech due to disabilities. Decoding a usera s imagined speech instead of actual speech would solve this problem. Such a Brain-Computer Interface (BCI) based on imagined speech would enable fast and natural communication without the need to actually speak out loud. These interfaces could provide a voice to otherwise mute people. This dissertation investigates BCIs based on speech processes using functional Near In- frared Spectroscopy (fNIRS) and Electrocorticography (ECoG), two brain activity imaging modalities on opposing ends of an invasiveness scale. Brain activity data have low signal- to-noise ratio and complex spatio-temporal and spectral coherence. To analyze these data, techniques from the areas of machine learning, neuroscience and Automatic Speech Recog- nition are combined in this dissertation to facilitate robust classification of detailed speech processes while simultaneously illustrating the underlying neural processes. fNIRS is an imaging modality based on cerebral blood flow. It only requires affordable hardware and can be set up within minutes in a day-to-day environment. Therefore, it is ideally suited for convenient user interfaces. However, the hemodynamic processes measured by fNIRS are slow in nature and the technology therefore offers poor temporal resolution. We investigate speech in fNIRS and demonstrate classification of speech processes for BCIs based on fNIRS. ECoG provides ideal signal properties by invasively measuring electrical potentials artifact- free directly on the brain surface. High spatial resolution and temporal resolution down to millisecond sampling provide localized information with accurate enough timing to capture the fast process underlying speech production. This dissertation presents the Brain-to- Text system, which harnesses automatic speech recognition technology to decode a textual representation of continuous speech from ECoG. This could allow to compose messages or to issue commands through a BCI. While the decoding of a textual representation is unparalleled for device control and typing, direct communication is even more natural if the full expressive power of speech - including emphasis and prosody - could be provided. For this purpose, a second system is presented, which directly synthesizes neural signals into audible speech, which could enable conversation with friends and family through a BCI. Up to now, both systems, the Brain-to-Text and synthesis system are operating on audibly produced speech. To bridge the gap to the final frontier of neural prostheses based on imagined speech processes, we investigate the differences between audibly produced and imagined speech and present first results towards BCI from imagined speech processes. This dissertation demonstrates the usage of speech processes as a paradigm for BCI for the first time. Speech processes offer a fast and natural interaction paradigm which will help patients and healthy users alike to communicate with computers and with friends and family efficiently through BCIs

    Classifying motor imagery in presence of speech

    Get PDF
    In the near future, brain-computer interface (BCI) applications for non-disabled users will require multimodal interaction and tolerance to dynamic environment. However, this conflicts with the highly sensitive recording techniques used for BCIs, such as electroencephalography (EEG). Advanced machine learning and signal processing techniques are required to decorrelate desired brain signals from the rest. This paper proposes a signal processing pipeline and two classification methods suitable for multiclass EEG analysis. The methods were tested in an experiment on separating left/right hand imagery in presence/absence of speech. The analyses showed that the presence of speech during motor imagery did not affect the classification accuracy significantly and regardless of the presence of speech, the proposed methods were able to separate left and right hand imagery with an accuracy of 60%. The best overall accuracy achieved for the 5-class separation of all the tasks was 47% and both proposed methods performed equally well. In addition, the analysis of event-related spectral power changes revealed characteristics related to motor imagery and speech

    Unsupervised decoding of long-term, naturalistic human neural recordings with automated video and audio annotations

    Get PDF
    Fully automated decoding of human activities and intentions from direct neural recordings is a tantalizing challenge in brain-computer interfacing. Most ongoing efforts have focused on training decoders on specific, stereotyped tasks in laboratory settings. Implementing brain-computer interfaces (BCIs) in natural settings requires adaptive strategies and scalable algorithms that require minimal supervision. Here we propose an unsupervised approach to decoding neural states from human brain recordings acquired in a naturalistic context. We demonstrate our approach on continuous long-term electrocorticographic (ECoG) data recorded over many days from the brain surface of subjects in a hospital room, with simultaneous audio and video recordings. We first discovered clusters in high-dimensional ECoG recordings and then annotated coherent clusters using speech and movement labels extracted automatically from audio and video recordings. To our knowledge, this represents the first time techniques from computer vision and speech processing have been used for natural ECoG decoding. Our results show that our unsupervised approach can discover distinct behaviors from ECoG data, including moving, speaking and resting. We verify the accuracy of our approach by comparing to manual annotations. Projecting the discovered cluster centers back onto the brain, this technique opens the door to automated functional brain mapping in natural settings

    Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges

    Get PDF
    In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices
    corecore