6,442 research outputs found

    Biosignal and context monitoring: Distributed multimedia applications of body area networks in healthcare

    Get PDF
    We are investigating the use of Body Area Networks (BANs), wearable sensors and wireless communications for measuring, processing, transmission, interpretation and display of biosignals. The goal is to provide telemonitoring and teletreatment services for patients. The remote health professional can view a multimedia display which includes graphical and numerical representation of patients’ biosignals. Addition of feedback-control enables teletreatment services; teletreatment can be delivered to the patient via multiple modalities including tactile, text, auditory and visual. We describe the health BAN and a generic mobile health service platform and two context aware applications. The epilepsy application illustrates processing and interpretation of multi-source, multimedia BAN data. The chronic pain application illustrates multi-modal feedback and treatment, with patients able to view their own biosignals on their handheld device

    Ubiquitous Sensor Networks in IMS: an Ambient Intelligence Telco Platform

    Get PDF
    Ubiquitous Sensor Network (USN) concept describes the integration of heterogeneous and geographically dispersed Wireless Sensor and Actuator Networks (WS&AN) into rich information infrastructures for accurate representation and access to different dynamic user’s physical contexts. This relatively new concept envisions future Sensor-Based Services leading to market disruptive innovations in a broad range of application domains, mainly personal (lifestyle assistants), community (professional users) and industrial domains. The support for this broad range of innovative Ambient Intelligence services urgently demands a standardized access to different WS&AN, and Telco Operators have an opportunity to lead this technological challenge as they evolve towards future Next-Generation Networks. Telefónica Research and Development is a leading innovation company that provides communication services for businesses and consumers. Networks and Service Platforms is a major Telefónica I+D innovation area where new Service Architectures and Platforms concepts are essential for the development of services with a high differentiation value. This contribution describes Telefónica I+D activities directed to the design of an Ambient Intelligence Platform integrating USN concepts over NGN architectures. In our view IP Multimedia Subsystem (IMS) concepts can enable and promote a first generation of Sensor-Based Services where multimedia interactive sessions are enriched with contextual information from WS&ANs. To this end three major design criteria are addressed at three different levels. At the application layer, OMA Service Environment and OGC Sensor Web Enablement are combined to define a specific USN Service Enabler. At the communication, management and control level WS&AN Gateways are defined for integrating WS&ANs infrastructures into all-IP IMS environments. While at the lower level, data and meta-data exchanges with different WS&ANs entities are homogeneously represented using OGC® SensorML standard. Finally this paper concludes by discussing some preliminary business opportunities we foresee for the proposed Platform

    A review of the role of sensors in mobile context-aware recommendation systems

    Get PDF
    Recommendation systems are specialized in offering suggestions about specific items of different types (e.g., books, movies, restaurants, and hotels) that could be interesting for the user. They have attracted considerable research attention due to their benefits and also their commercial interest. Particularly, in recent years, the concept of context-aware recommendation system has appeared to emphasize the importance of considering the context of the situations in which the user is involved in order to provide more accurate recommendations. The detection of the context requires the use of sensors of different types, which measure different context variables. Despite the relevant role played by sensors in the development of context-aware recommendation systems, sensors and recommendation approaches are two fields usually studied independently. In this paper, we provide a survey on the use of sensors for recommendation systems. Our contribution can be seen from a double perspective. On the one hand, we overview existing techniques used to detect context factors that could be relevant for recommendation. On the other hand, we illustrate the interest of sensors by considering different recommendation use cases and scenarios

    Emerging technologies for learning report (volume 3)

    Get PDF

    Ambient-aware continuous care through semantic context dissemination

    Get PDF
    Background: The ultimate ambient-intelligent care room contains numerous sensors and devices to monitor the patient, sense and adjust the environment and support the staff. This sensor-based approach results in a large amount of data, which can be processed by current and future applications, e. g., task management and alerting systems. Today, nurses are responsible for coordinating all these applications and supplied information, which reduces the added value and slows down the adoption rate. The aim of the presented research is the design of a pervasive and scalable framework that is able to optimize continuous care processes by intelligently reasoning on the large amount of heterogeneous care data. Methods: The developed Ontology-based Care Platform (OCarePlatform) consists of modular components that perform a specific reasoning task. Consequently, they can easily be replicated and distributed. Complex reasoning is achieved by combining the results of different components. To ensure that the components only receive information, which is of interest to them at that time, they are able to dynamically generate and register filter rules with a Semantic Communication Bus (SCB). This SCB semantically filters all the heterogeneous care data according to the registered rules by using a continuous care ontology. The SCB can be distributed and a cache can be employed to ensure scalability. Results: A prototype implementation is presented consisting of a new-generation nurse call system supported by a localization and a home automation component. The amount of data that is filtered and the performance of the SCB are evaluated by testing the prototype in a living lab. The delay introduced by processing the filter rules is negligible when 10 or fewer rules are registered. Conclusions: The OCarePlatform allows disseminating relevant care data for the different applications and additionally supports composing complex applications from a set of smaller independent components. This way, the platform significantly reduces the amount of information that needs to be processed by the nurses. The delay resulting from processing the filter rules is linear in the amount of rules. Distributed deployment of the SCB and using a cache allows further improvement of these performance results

    Technology Enabled Learning Worlds

    Get PDF

    Progress in information technology and tourism management: 20 years on and 10 years after the Internet—The state of eTourism research

    Get PDF
    This paper reviews the published articles on eTourism in the past 20 years. Using a wide variety of sources, mainly in the tourism literature, this paper comprehensively reviews and analyzes prior studies in the context of Internet applications to Tourism. The paper also projects future developments in eTourism and demonstrates critical changes that will influence the tourism industry structure. A major contribution of this paper is its overview of the research and development efforts that have been endeavoured in the field, and the challenges that tourism researchers are, and will be, facing
    corecore