9,588 research outputs found

    Towards Context-aware Process Guidance in Cyber-Physical Systems with Augmented Reality

    Get PDF
    Assembly, configuration, maintenance, and repair processes in cyber-physical systems (e.g., a press line in a plant) comprise a multitude of complex tasks, whose execution needs to be controlled, coordinated and monitored. Amongst others, a process-centric guidance of users (e.g. service operators) is required, taking the high variability in the assembly of cyber-physical systems (e.g. press line variability) into account. Moreover, the tasks to be performed along these processes may be related to physical components, sensors and actuators, which need to be properly recognized, integrated and operated. In order to digitize cyber-physical processes as well as to guide users in a process-centric way, therefore, we suggest integrating process management technology, sensor/actuator interfaces, and augmented reality techniques. The paper discusses fundamental requirements for such an integration and presents an approach for process-centric user guidance that combines context and process management with augmented reality enhanced tasks. For evaluation purposes, we analyzed the cyber-physical processes of pharmaceutical packaging machines and implemented selected ones based on the approach. Overall, we are able to demonstrate the usefulness of context-aware process management for the flexible support of cyber-physical processes in the Industrial Internet of Things

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    Combined automotive safety and security pattern engineering approach

    Get PDF
    Automotive systems will exhibit increased levels of automation as well as ever tighter integration with other vehicles, traffic infrastructure, and cloud services. From safety perspective, this can be perceived as boon or bane - it greatly increases complexity and uncertainty, but at the same time opens up new opportunities for realizing innovative safety functions. Moreover, cybersecurity becomes important as additional concern because attacks are now much more likely and severe. However, there is a lack of experience with security concerns in context of safety engineering in general and in automotive safety departments in particular. To address this problem, we propose a systematic pattern-based approach that interlinks safety and security patterns and provides guidance with respect to selection and combination of both types of patterns in context of system engineering. A combined safety and security pattern engineering workflow is proposed to provide systematic guidance to support non-expert engineers based on best practices. The application of the approach is shown and demonstrated by an automotive case study and different use case scenarios.EC/H2020/692474/EU/Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems/AMASSEC/H2020/737422/EU/Secure COnnected Trustable Things/SCOTTEC/H2020/732242/EU/Dependability Engineering Innovation for CPS - DEIS/DEISBMBF, 01IS16043, Collaborative Embedded Systems (CrESt

    Enabling Non-Professional Users To Bring Physical Processes Into The Industrial Metaverse

    Get PDF
    Augmented reality is essential for the Metaverse because, with this technology, people, spaces, and things can be digitally and physically intertwined. But the creation of AR content is a very complex process carried out by technically skilled developers. For the Metaverse, it is necessary to enable non-professional users to create AR content. We, therefore, want to study the challenges that non-professional users face while creating AR content for process guidance systems that represents a physical process. For this reason, we conducted an exploratory analysis using ten AR authoring experts and arranged a focus group with domain experts and AR authoring experts. As a result, we identified four fundamental design requirements on how an AR authoring tool must be designed to bring physical processes into the Metaverse. Thus, we contribute to understanding AR-based process guidance systems and enable the instantiation and evaluation of an AR authoring tool in large DSR project

    Augmented reality in support of intelligent manufacturing – A systematic literature review

    Get PDF
    Industry increasingly moves towards digitally enabled ‘smart factories’ that utilise the internet of things (IoT) to realise intelligent manufacturing concepts like predictive maintenance or extensive machine to machine communication. A core technology to facilitate human integration in such a system is augmented reality (AR), which provides people with an interface to interact with the digital world of a smart factory. While AR is not ready yet for industrial deployment in some areas, it is already used in others. To provide an overview of research activities concerning AR in certain shop floor operations, a total of 96 relevant papers from 2011 to 2018 are reviewed. This paper presents the state of the art, the current challenges, and future directions of manufacturing related AR research through a systematic literature review and a citation network analysis. The results of this review indicate that the context of research concerning AR gets increasingly broader, especially by addressing challenges when implementing AR solutions.No funding was received

    Human-robot collaborative assembly in cyber-physical production: Classification framework and implementation

    Get PDF
    The production industry is moving towards the next generation of assembly, which is conducted based on safe and reliable robots working in the same workplace alongside with humans. Focusing on assembly tasks, this paper presents a review of human-robot collaboration research and its classification works. Aside from defining key terms and relations, the paper also proposes means of describing human-robot collaboration that can be relied on during detailed elaboration of solutions. A human-robot collaborative assembly system is developed with a novel and comprehensive structure, and a case study is presented to validate the proposed framework. © 2017

    Modeling 4.0: Conceptual Modeling in a Digital Era

    Get PDF
    Digitization provides entirely new affordances for our economies and societies. This leads to previously unseen design opportunities and complexities as systems and their boundaries are re-defined, creating a demand for appropriate methods to support design that caters to these new demands. Conceptual modeling is an established means for this, but it needs to be advanced to adequately depict the requirements of digitization. However, unlike the actual deployment of digital technologies in various industries, the domain of conceptual modeling itself has not yet undergone a comprehensive renewal in light of digitization. Therefore, inspired by the notion of Industry 4.0, an overarching concept for digital manufacturing, in this commentary paper, we propose Modeling 4.0 as the notion for conceptual modeling mechanisms in a digital environment. In total, 12 mechanisms of conceptual modeling are distinguished, providing ample guidance for academics and professionals interested in ensuring that modeling techniques and methods continue to fit contemporary and emerging requirements
    • …
    corecore