19,922 research outputs found

    The KB paradigm and its application to interactive configuration

    Full text link
    The knowledge base paradigm aims to express domain knowledge in a rich formal language, and to use this domain knowledge as a knowledge base to solve various problems and tasks that arise in the domain by applying multiple forms of inference. As such, the paradigm applies a strict separation of concerns between information and problem solving. In this paper, we analyze the principles and feasibility of the knowledge base paradigm in the context of an important class of applications: interactive configuration problems. In interactive configuration problems, a configuration of interrelated objects under constraints is searched, where the system assists the user in reaching an intended configuration. It is widely recognized in industry that good software solutions for these problems are very difficult to develop. We investigate such problems from the perspective of the KB paradigm. We show that multiple functionalities in this domain can be achieved by applying different forms of logical inferences on a formal specification of the configuration domain. We report on a proof of concept of this approach in a real-life application with a banking company. To appear in Theory and Practice of Logic Programming (TPLP).Comment: To appear in Theory and Practice of Logic Programming (TPLP

    Finite temperature correlation functions from form factors

    Get PDF
    We investigate proposals of how the form factor approach to compute correlation functions at zero temperature can be extended to finite temperature. For the two-point correlation function we conclude that the suggestion to use the usual form factor expansion with the modification of introducing dressing functions of various kinds is only suitable for free theories. Dynamically interacting theories require a more severe change of the form factor program

    Towards a shared ontology: a generic classification of cognitive processes in conceptual design

    Get PDF
    Towards addressing ontological issues in design cognition research, this paper presents the first generic classification of cognitive processes investigated in protocol studies on conceptual design cognition. The classification is based on a systematic review of 47 studies published over the past 30 years. Three viewpoints on the nature of design cognition are outlined (search, exploration and design activities), highlighting considerable differences in the concepts and terminology applied to describe cognition. To provide a more unified view of the cognitive processes fundamentally under study, we map specific descriptions of cognitive processes provided in protocol studies to more generic, established definitions in the cognitive psychology literature. This reveals a set of 6 categories of cognitive process that appear to be commonly studied and are therefore likely to be prevalent in conceptual design: (1) long-term memory; (2) semantic processing; (3) visual perception; (4) mental imagery processing; (5) creative output production and (6) executive functions. The categories and their constituent processes are formalised in the generic classification. The classification provides the basis for a generic, shared ontology of cognitive processes in design that is conceptually and terminologically consistent with the ontology of cognitive psychology and neuroscience. In addition, the work highlights 6 key avenues for future empirical research: (1) the role of episodic and semantic memory; (2) consistent definitions of semantic processes; (3) the role of sketching from alternative theoretical perspectives on perception and mental imagery; (4) the role of working memory; (5) the meaning and nature of synthesis and (6) unidentified cognitive processes implicated in conceptual design elsewhere in the literature
    corecore