78,761 research outputs found

    The Data Big Bang and the Expanding Digital Universe: High-Dimensional, Complex and Massive Data Sets in an Inflationary Epoch

    Get PDF
    Recent and forthcoming advances in instrumentation, and giant new surveys, are creating astronomical data sets that are not amenable to the methods of analysis familiar to astronomers. Traditional methods are often inadequate not merely because of the size in bytes of the data sets, but also because of the complexity of modern data sets. Mathematical limitations of familiar algorithms and techniques in dealing with such data sets create a critical need for new paradigms for the representation, analysis and scientific visualization (as opposed to illustrative visualization) of heterogeneous, multiresolution data across application domains. Some of the problems presented by the new data sets have been addressed by other disciplines such as applied mathematics, statistics and machine learning and have been utilized by other sciences such as space-based geosciences. Unfortunately, valuable results pertaining to these problems are mostly to be found only in publications outside of astronomy. Here we offer brief overviews of a number of concepts, techniques and developments, some "old" and some new. These are generally unknown to most of the astronomical community, but are vital to the analysis and visualization of complex datasets and images. In order for astronomers to take advantage of the richness and complexity of the new era of data, and to be able to identify, adopt, and apply new solutions, the astronomical community needs a certain degree of awareness and understanding of the new concepts. One of the goals of this paper is to help bridge the gap between applied mathematics, artificial intelligence and computer science on the one side and astronomy on the other.Comment: 24 pages, 8 Figures, 1 Table. Accepted for publication: "Advances in Astronomy, special issue "Robotic Astronomy

    EMERGING THE EMERGENCE SOCIOLOGY: The Philosophical Framework of Agent-Based Social Studies

    Get PDF
    The structuration theory originally provided by Anthony Giddens and the advance improvement of the theory has been trying to solve the dilemma came up in the epistemological aspects of the social sciences and humanity. Social scientists apparently have to choose whether they are too sociological or too psychological. Nonetheless, in the works of the classical sociologist, Emile Durkheim, this thing has been stated long time ago. The usage of some models to construct the bottom-up theories has followed the vast of computational technology. This model is well known as the agent based modeling. This paper is giving a philosophical perspective of the agent-based social sciences, as the sociology to cope the emergent factors coming up in the sociological analysis. The framework is made by using the artificial neural network model to show how the emergent phenomena came from the complex system. Understanding the society has self-organizing (autopoietic) properties, the Kohonen’s self-organizing map is used in the paper. By the simulation examples, it can be seen obviously that the emergent phenomena in social system are seen by the sociologist apart from the qualitative framework on the atomistic sociology. In the end of the paper, it is clear that the emergence sociology is needed for sharpening the sociological analysis in the emergence sociology

    From techno-scientific grammar to organizational syntax. New production insights on the nature of the firm

    Get PDF
    The paper aims at providing the conceptual building blocks of a theory of the firm which addresses its "ontological questions" (existence,boundaries and organization) by placing production at its core. We draw on engineering for a more accurate description of the production process itself, highlighting its inner complexity and potentially chaotic nature, and on computational linguistics for a production-based account of the nature of economic agents and of the mechanisms through which they build ordered production sets. In so doing, we give a "more appropriate" production basis to the crucial issues of how firm's boundaries are set, how its organisational structure is defined, and how it changes over time. In particular, we show how economic agents select some tasks to be performed internally, while leaving some other to external suppliers, on the basis of criteria based on both the different degrees of internal congruence of the tasks to be performed (i.e. the internal environment), and on the outer relationships carried out with other agents (i.e. the external environment)

    What Can Artificial Intelligence Do for Scientific Realism?

    Get PDF
    The paper proposes a synthesis between human scientists and artificial representation learning models as a way of augmenting epistemic warrants of realist theories against various anti-realist attempts. Towards this end, the paper fleshes out unconceived alternatives not as a critique of scientific realism but rather a reinforcement, as it rejects the retrospective interpretations of scientific progress, which brought about the problem of alternatives in the first place. By utilising adversarial machine learning, the synthesis explores possibility spaces of available evidence for unconceived alternatives providing modal knowledge of what is possible therein. As a result, the epistemic warrant of synthesised realist theories should emerge bolstered as the underdetermination by available evidence gets reduced. While shifting the realist commitment away from theoretical artefacts towards modalities of the possibility spaces, the synthesis comes out as a kind of perspectival modelling
    corecore