33 research outputs found

    Polarimetric Synthetic Aperture Radar

    Get PDF
    This open access book focuses on the practical application of electromagnetic polarimetry principles in Earth remote sensing with an educational purpose. In the last decade, the operations from fully polarimetric synthetic aperture radar such as the Japanese ALOS/PalSAR, the Canadian Radarsat-2 and the German TerraSAR-X and their easy data access for scientific use have developed further the research and data applications at L,C and X band. As a consequence, the wider distribution of polarimetric data sets across the remote sensing community boosted activity and development in polarimetric SAR applications, also in view of future missions. Numerous experiments with real data from spaceborne platforms are shown, with the aim of giving an up-to-date and complete treatment of the unique benefits of fully polarimetric synthetic aperture radar data in five different domains: forest, agriculture, cryosphere, urban and oceans

    Radarkaugseire rakendused metsaüleujutuste ja põllumajanduslike rohumaade jälgimiseks

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsioone.Käesolev doktoritöö keskendub radarkaugseire rakenduste arendamisele kahes keerukas looduskeskkonnas: üleujutatud metsas ja põllumajanduslikel rohumaadel. Uurimistöö viidi läbi Tartu Observatooriumis, Tartu Ülikoolis, Ventspilsi Kõrgkoolis ja Aalto Ülikoolis. Töö esimene osa käsitleb X-laineala polarimeetrilise radarisignaali käitumist regulaarselt üleujutatavas metsas Soomaa näitel ning teine osa põllumajanduslike rohumaade seisundi ja polarimeetriliste ning interferomeetriliste tehisava-radari parameetrite vahelisi seoseid. 2012 kevadel Soomaa testalal TerraSAR-X andmetega läbi viidud eksperiment näitas, et topelt-peegeldusele tundlik HH-VV polarimeetriline kanal pakub tõesti kontrastsemat tagasihajumisepõhist üleujutatud metsa eristust üleujutamata metsast kui traditsiooniline HH polarimeetriline kanal. HH-VV kanali eelis HH kanali ees on seda suurem, mida madalam on mets ning raagus tingimustes lehtmetsas oli HH-VV kanali eelis HH kanali ees suurem kui okasmetsas. Lisaks on üleujutusele tundlik HH ja VV kanali polarimeetriline faasivahe, mida on soovitatud ka varasemates töödes kasutada täiendava andmeallikana üleujutuste kaardistamisel. Käesolevas doktoritöös mõõdeti polarimeetrilise X-laineala tehisava-radari HH/VV faasivahe suurenemine üleujutuste tõttu erineva kõrgusega okas- ja lehtmetsas. 2013 a vegetatsiooniperioodil korraldati Rannu test-alal välimõõtmistega toetatud eksperiment uurimaks X- ja C-laineala polarimeetrilise ning X-laineala interferomeetrilise tehisava-radari parameetrite undlikkust rohumaade tingimuste muutustele. Ilmnes, et ühepäevase vahega kogutud X-laineala tehisava-radari interferomeetriliste paaride koherentsus korreleerus rohu kõrgusega. Koherentsus oli seda madalam, mida kõrgem oli rohi - leitud seost on võimalik potentsiaalselt rakendada niitmise tuvastamiseks. TerraSAR-X ja RADARSAT-2 polarimeetriliste aegridade analüüsi tulemusel leiti kaks niitmisele tundlikku parameetrit: HH/VV polarimeetriline koherentsus ja polarimeetriline entroopia. Niitmise järel langes HH/VV polarimeetriline koherentsus järsult ning polarimeetriline entroopia tõusis järsult. Rohu tagasikasvamise faasis hakkas HH/VV polarimeetriline koherentsus aeglaselt kasvama ning entroopia aeglaselt kahanema. Täheldatud efekt oli tugevam TerraSARX X-laineala aegridadel kui RADARSAT-2 C-riba tehisava-radari mõõtmistel ning seda selgemini nähtav mida rohkem biomassi niitmise järgselt maha jäi. Leitud HH/VV polarimeetrilise koherentsuse ja polarimeetrilise entroopia käitumine vastas taimkatte osakestepilve radarikiirguse tagasihajumismudelile. Mudeli järgi põhjus- 60 tas eelnimetatud parameetrite iseloomulikku muutust rohukõrte kui dipoolide orientatsiooni ja korrastatuse muut niitmise tõttu, mis on kooskõlas meie välimõõtmiste andmetega.This thesis presents research about the application of radar remote sensing for monitoring of complex natural environments, such as flooded forests and agricultural grasslands. The study was carried out in Tartu Observatory, University of Tartu, Ventspils University College, and Aalto University. The research consists of two distinctive parts devoted to polarimetric analysis of images from a seasonal flooding of wetlands, and to polarimetric and interferometric analysis of a summer-long campaign covering eleven agricultural grasslands. TerraSAR-X data from 2012 were used to assess the use of the double-bounce scattering mechanism for improving the mapping of flooded forest areas. The study confirmed that the HH–VV polarimetric channel that is sensitive to double-bounce scattering provides increased separation between flooded and unflooded forest areas when compared to the conventional HH channel. The increase in separation increases with decreasing forest height, and it is more pronounced for deciduous forests due to the leaf-off conditions during the study. The phase difference information provided by the HH–VV channel may provide additional information for delineating flooded and unflooded forest areas. Time series of X-band (TanDEM-X and COSMO-SkyMed) and C-band (RADARSAT-2) data from 2013 were analyzed in respect to vegetation parameters collected during a field survey. The one-day repeat-pass X-band interferometric coherence was shown to be correlated to the grassland vegetation height. The coherence was also found to be potentially useful for detecting mowing events. The polarimetric analysis of TanDEM-X and RADARSAT-2 data identified two parameters sensitive to mowing events - the HH/VV polarimetric coherence magnitude and the H2α entropy. Mowing of vegetation consistently caused the coherence magnitude to decrease and the entropy to increase. The effect was more pronounced in case of X-band data. Additionally, the effect was stronger with more vegetation left on the ground after mowing. The effect was explained using a vegetation particle scattering model. The changes in polarimetric variables was shown to be caused by the change of orientation and the randomness of the vegetation

    Polarimetric Synthetic Aperture Radar, Principles and Application

    Get PDF
    Demonstrates the benefits of the usage of fully polarimetric synthetic aperture radar data in applications of Earth remote sensing, with educational and development purposes. Includes numerous up-to-date examples with real data from spaceborne platforms and possibility to use a software to support lecture practicals. Reviews theoretical principles in an intuitive way for each application topic. Covers in depth five application domains (forests, agriculture, cryosphere, urban, and oceans), with reference also to hazard monitorin

    Land cover and forest mapping in boreal zone using polarimetric and interferometric SAR data

    Get PDF
    Remote sensing offers a wide range of instruments suitable to meet the growing need for consistent, timely and cost-effective monitoring of land cover and forested areas. One of the most important instruments is synthetic aperture radar (SAR) technology, where transfer of advanced SAR imaging techniques from mostly experimental small test-area studies to satellites enables improvements in remote assessment of land cover on a global scale. Globally, forests are very suitable for remote sensing applications due to their large dimensions and relatively poor accessibility in distant areas. In this thesis, several methods were developed utilizing Earth observation data collected using such advanced SAR techniques, as well as their application potential was assessed. The focus was on use of SAR polarimetry and SAR interferometry to improve performance and robustness in assessment of land cover and forest properties in the boreal zone. Particular advances were achieved in land cover classification and estimating several key forest variables, such as forest stem volume and forest tree height. Important results reported in this thesis include: improved polarimetric SAR model-based decomposition approach suitable for use in boreal forest at L-band; development and demonstration of normalization method for fully polarimetric SAR mosaics, resulting in improved classification performance and suitable for wide-area mapping purposes; establishing new inversion procedure for robust forest stem volume retrieval from SAR data; developing semi-empirical method and demonstrating potential for soil type separation (mineral soil, peatland) under forested areas with L-band polarimetric SAR; developing and demonstrating methodology for simultaneous retrieval of forest tree height and radiowave attenuation in forest layer from inter-ferometric SAR data, resulting in improved accuracy and more stable estimation of forest tree height

    Hemiboreaalsete metsade kaardistamine interferomeetrilise tehisava-radari andmetelt

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsioone.Käesolev doktoritöö uurib tehisavaradari (SAR) kasutusvõimalusi metsa kõrguse hindamiseks hemiboreaalsete metsade vööndis. Uurimistöö viidi läbi Tartu Üli¬kooli, Tartu Observatooriumi, Aalto Ülikooli, Euroopa Kosmoseagentuuri (ESA) kaugseire keskuse ESRIN ja Reach-U koostöös. Uurimistöös kasutatud satelliidi¬andmed on pärit Saksa Kosmosekeskuse (DLR) kõrglahutusega bistaatilise X-laineala tehisavaradari TanDEM-X satelliidipaarilt. Sagedasti uuenevad satelliidiandmed, nende globaalne katvus ja kõrge ruumi¬line lahutus võimaldavad tehisavaradari abil kaardistada metsi ning nendes toimu¬vaid muutusi suurtel maa-aladel. Radari abil on võimalik saada kõrge lahutusvõimega pilte, mis on tundlikud taimestikule, maapinna karedusele ja dielektrilistele omadustele. Sünkroonis lendava radaripaari samaaegselt tehtud pildid elimineerivad võimalikud ajalised muutused taimestikus ning tänu sellele on radariandmetest võimalik tuletada metsade vertikaalset struktuuri ja kõrgust. Uurimistöös käsitletakse tehisavaradari interferomeetrilise koherentsuse tund¬likkust metsa kõrguse suhtes ning analüüsitakse, millised keskkonna ja klimaati¬lised tingimused ning satelliidi orbiidiga seotud parameetrid mõjutavad radari¬piltidelt erinevate puuliikide kõrguse hindamise täpsust. Lisaks keskendub väitekiri interferomeetrilisele koherentsusele tuginevate mudelite analüüsi¬misele ning nende täpsuse hindamisele operatiivse metsa kõrguse kaardistamise raken-duseks. Vaatluse alla on võetud kolm testala, mis asuvad Soomaa rahvuspargis, Võrtsjärve idakaldal Rannus ja Peipsiveere looduskaitsealal ning katavad kokku 2291 hektarit metsa. 23 TanDEM-X satelliidipildi koherentsuspilte võrreldakse samadel testaladel aerolaserskaneerimise (LiDAR) abil mõõdetud puistute kõrgu¬sega, mis on omakorda jagatud kolme rühma (kuused, männid ja laia¬lehised segametsad). RVoG (Random Volume over Ground) taimekatte mudel ning sellest tule¬tatud lihtsamad pooleempiirilised mudelid sobituvad olemasolevate TanDEM-X koherentsuse ning LiDARi metsa puistute kõrgusandmetega hästi. Töö tule¬mused kinnitavad, et tulevikus on suurte ja erinevatest metsatüüpidest koosne¬vate metsade kõrguse kosmosest kaardistamisel otstarbekas kasutusele võtta esmalt just soovitatud lihtsamad ja universaalsemad mudelid.This thesis presents research in the field of radar remote sensing and contributes to the forest monitoring application development using space-borne synthetic aperture radar (SAR). Satellite data is particularly useful for large-scale forestry applications making high revisit monitoring of the state of forests worldwide possible. The sensitivity of SAR to the dielectric and geometrical properties of the targets, penetration capacity and coherent imaging properties make it a unique tool for mapping and monitoring forest biomes. SAR satellites are also capable of retrieving additional information about the structure of the forest, tree height and biomass estimates as an essential input for monitoring the changes in the carbon stocks. Interferometric SAR (InSAR) is an advanced SAR imaging technique that allows the retrieval of forest parameters while working in nearly all weather conditions, independently of daylight and cloud cover. This research concen¬trates on assessing the impact of different variables affecting hemiboreal forest height estimation from space-borne X-band interferometric SAR coherence data. In particular, the research analyses the changes in coherence dynamics related to seasonal conditions, tree species and imaging properties using a large collection of interferometric SAR images from different seasons over a four-year period. The study is carried out over three test sites in Estonia using the extensive multi-temporal dataset of 23 TanDEM-X images, covering 2291 hectares of forests to describe the relation between the interferometric SAR coherence mag¬nitude and forest parameters. The work demonstrates how the correlation of interferometric coherence and Airborne LiDAR Scanning (ALS)-derived forest height varies for pine and deciduous tree species, for summer (leaf-on) and winter (leaf-off) conditions and for flooded forest floor. A simple semi-empirical modelling approach is proposed as being suitable for wide area forest mapping with limited a priori information under a range of seasonal and environ¬¬mental conditions. A Random Volume over Ground (RVoG) model and three semi-empirical models are compared and validated against a large dataset of coherence magnitude and ALS-measured data over hemiboreal forests in Estonia. The results show that all proposed models perform well in describing the relationship between hemiboreal forest height and interferometric coherence, allowing in future to derive forest stand height with an accuracy suitable for a wide range of applications

    Crop development monitoring from Synthetic Aperture Radar (SAR) imagery

    Get PDF
    Satellite remote sensing plays a vital role in providing large-scale and timely data to stakeholders of the agricultural supply chain. This allows for informed decision-making that promotes sustainable and cost-effective crop management practices. In particular, data derived from satellite-based Synthetic Aperture Radar (SAR) systems, provide opportunities for continuous crop monitoring, taking advantage of its ability to acquire images during day or night and under almost all weather conditions. Moreover, an abundance of SAR data can be anticipated in the next 5 years with the launch of several international SAR missions. However, research on crop development monitoring with data from SAR satellites has not been as widely studied as with data derived from passive multi-spectral satellites and contributions can be made to the current state-of-the-art techniques. This thesis aims at improving the current knowledge on the use of satellite-based SAR imagery for crop development monitoring. This is approached by developing novel methodologies and detailed interpretations of multitemporal SAR and Polarimetric SAR (PolSAR) responses to crop growth in three different test sites. Chapter two presents a detailed analysis of the Sentinel-1 SAR satellite response to asparagus crop development in Peru, investigating the capabilities of the sensor to capture seasonality effects as well as providing an interpretation of the temporal backscatter signature. This is complemented with a case study where a multiple-output random forest regression algorithm is used to successfully retrieve crop growth stage from Sentinel-1 data and temperature measurements. Following the limitations identified with this approach, a methodology that builds upon ideas of Bayesian Filtering Frameworks (BFFs) for crop monitoring is proposed in chapter three. It incorporates Gaussian processes to model crop dynamics as well as to model the remote sensing response to the crop state. Using this approach, it is possible to derive daily predictions with the associated uncertainties, to combine in near-real-time data from active and passive satellites as well as to estimate past and future crop key events that are of strategic importance for different stakeholders. The final section of this thesis looks at the new developments of the SAR technology considering that future open access missions will provide Quad Polarimetric SAR data. An algorithm based on multitemporal PolSAR change detection is introduced in chapter four. It defines a Change Matrix to encode an interpretable representation of the crop dynamics as captured by the evolution of the scattering mechanisms over time. We use rice fields in Spain and multiple cereal crops in Canada to test the use of the algorithm for crop monitoring. A supervised learning-based crop type classification methodology is then proposed with the same method by using the encoded scattering mechanisms as input for a neural-network-based classifier, achieving comparable performances to state-of-the-art classifiers. The results obtained in this thesis represent novel additions to the literature that contribute to our understanding and successful use of SAR imagery for agricultural monitoring. For the first time, a detailed analysis of asparagus crops is presented. It is a key crop for agricultural exports of Peru, the largest exporter of asparagus in the world. Secondly, two key contributions to the state of the art BFFs for crop monitoring are presented: a) A better exploitation of the SAR temporal dimension and an application with freely available data and b) given that it is a learning-based approach, it overcomes current limitations of transferability among crop types and regions. Finally, the PolSAR change detection approach presented in the last thesis chapter, provides a novel and easy-to-interpret tool for both crop monitoring and crop type mapping applications

    Remote sensing technology applications in forestry and REDD+

    Get PDF
    Advances in close-range and remote sensing technologies are driving innovations in forest resource assessments and monitoring on varying scales. Data acquired with airborne and spaceborne platforms provide high(er) spatial resolution, more frequent coverage, and more spectral information. Recent developments in ground-based sensors have advanced 3D measurements, low-cost permanent systems, and community-based monitoring of forests. The UNFCCC REDD+ mechanism has advanced the remote sensing community and the development of forest geospatial products that can be used by countries for the international reporting and national forest monitoring. However, an urgent need remains to better understand the options and limitations of remote and close-range sensing techniques in the field of forest degradation and forest change. Therefore, we invite scientists working on remote sensing technologies, close-range sensing, and field data to contribute to this Special Issue. Topics of interest include: (1) novel remote sensing applications that can meet the needs of forest resource information and REDD+ MRV, (2) case studies of applying remote sensing data for REDD+ MRV, (3) timeseries algorithms and methodologies for forest resource assessment on different spatial scales varying from the tree to the national level, and (4) novel close-range sensing applications that can support sustainable forestry and REDD+ MRV. We particularly welcome submissions on data fusion

    Spaceborne L-Band Synthetic Aperture Radar Data for Geoscientific Analyses in Coastal Land Applications: A Review

    Get PDF
    The coastal zone offers among the world’s most productive and valuable ecosystems and is experiencing increasing pressure from anthropogenic impacts: human settlements, agriculture, aquaculture, trade, industrial activities, oil and gas exploitation and tourism. Earth observation has great capability to deliver valuable data at the local, regional and global scales and can support the assessment and monitoring of land‐ and water‐related applications in coastal zones. Compared to optical satellites, cloud‐cover does not limit the timeliness of data acquisition with spaceborne Synthetic Aperture Radar (SAR) sensors, which have all‐weather, day and night capabilities. Hence, active radar systems demonstrate great potential for continuous mapping and monitoring of coastal regions, particularly in cloud‐prone tropical and sub‐tropical climates. The canopy penetration capability with long radar wavelength enables L‐band SAR data to be used for coastal terrestrial environments and has been widely applied and investigated for the following geoscientific topics: mapping and monitoring of flooded vegetation and inundated areas; the retrieval of aboveground biomass; and the estimation of soil moisture. Human activities, global population growth, urban sprawl and climate change‐induced impacts are leading to increased pressure on coastal ecosystems causing land degradation, deforestation and land use change. This review presents a comprehensive overview of existing research articles that apply spaceborne L‐band SAR data for geoscientific analyses that are relevant for coastal land applications

    Unsupervised Classification of Polarimetric SAR Images via Riemannian Sparse Coding

    Get PDF
    Unsupervised classification plays an important role in understanding polarimetric synthetic aperture radar (PolSAR) images. One of the typical representations of PolSAR data is in the form of Hermitian positive definite (HPD) covariance matrices. Most algorithms for unsupervised classification using this representation either use statistical distribution models or adopt polarimetric target decompositions. In this paper, we propose an unsupervised classification method by introducing a sparsity-based similarity measure on HPD matrices. Specifically, we first use a novel Riemannian sparse coding scheme for representing each HPD covariance matrix as sparse linear combinations of other HPD matrices, where the sparse reconstruction loss is defined by the Riemannian geodesic distance between HPD matrices. The coefficient vectors generated by this step reflect the neighborhood structure of HPD matrices embedded in the Euclidean space and hence can be used to define a similarity measure. We apply the scheme for PolSAR data, in which we first oversegment the images into superpixels, followed by representing each superpixel by an HPD matrix. These HPD matrices are then sparse coded, and the resulting sparse coefficient vectors are then clustered by spectral clustering using the neighborhood matrix generated by our similarity measure. The experimental results on different fully PolSAR images demonstrate the superior performance of the proposed classification approach against the state-of-the-art approachesThis work was supported in part by the National Natural Science Foundation of China under Grant 61331016 and Grant 61271401 and in part by the National Key Basic Research and Development Program of China under Contract 2013CB733404. The work of A. Cherian was supported by the Australian Research Council Centre of Excellence for Robotic Vision under Project CE140100016.
    corecore