4,590 research outputs found

    A Constrained Object Model for Configuration Based Workflow Composition

    Full text link
    Automatic or assisted workflow composition is a field of intense research for applications to the world wide web or to business process modeling. Workflow composition is traditionally addressed in various ways, generally via theorem proving techniques. Recent research observed that building a composite workflow bears strong relationships with finite model search, and that some workflow languages can be defined as constrained object metamodels . This lead to consider the viability of applying configuration techniques to this problem, which was proven feasible. Constrained based configuration expects a constrained object model as input. The purpose of this document is to formally specify the constrained object model involved in ongoing experiments and research using the Z specification language.Comment: This is an extended version of the article published at BPM'05, Third International Conference on Business Process Management, Nancy Franc

    Requirements modelling and formal analysis using graph operations

    Get PDF
    The increasing complexity of enterprise systems requires a more advanced analysis of the representation of services expected than is currently possible. Consequently, the specification stage, which could be facilitated by formal verification, becomes very important to the system life-cycle. This paper presents a formal modelling approach, which may be used in order to better represent the reality of the system and to verify the awaited or existing systemā€™s properties, taking into account the environmental characteristics. For that, we firstly propose a formalization process based upon properties specification, and secondly we use Conceptual Graphs operations to develop reasoning mechanisms of verifying requirements statements. The graphic visualization of these reasoning enables us to correctly capture the system specifications by making it easier to determine if desired properties hold. It is applied to the field of Enterprise modelling

    Specifying Reusable Components

    Full text link
    Reusable software components need expressive specifications. This paper outlines a rigorous foundation to model-based contracts, a method to equip classes with strong contracts that support accurate design, implementation, and formal verification of reusable components. Model-based contracts conservatively extend the classic Design by Contract with a notion of model, which underpins the precise definitions of such concepts as abstract equivalence and specification completeness. Experiments applying model-based contracts to libraries of data structures suggest that the method enables accurate specification of practical software

    A robust semantics hides fewer errors

    Get PDF
    In this paper we explore how formal models are interpreted and to what degree meaning is captured in the formal semantics and to what degree it remains in the informal interpretation of the semantics. By applying a robust approach to the definition of refinement and semantics, favoured by the event-based community, to state-based theory we are able to move some aspects from the informal interpretation into the formal semantics

    A Reasoner for Calendric and Temporal Data

    Get PDF
    Calendric and temporal data are omnipresent in countless Web and Semantic Web applications and Web services. Calendric and temporal data are probably more than any other data a subject to interpretation, in almost any case depending on some cultural, legal, professional, and/or locational context. On the current Web, calendric and temporal data can hardly be interpreted by computers. This article contributes to the Semantic Web, an endeavor aiming at enhancing the current Web with well-defined meaning and to enable computers to meaningfully process data. The contribution is a reasoner for calendric and temporal data. This reasoner is part of CaTTS, a type language for calendar definitions. The reasoner is based on a \theory reasoning" approach using constraint solving techniques. This reasoner complements general purpose \axiomatic reasoning" approaches for the Semantic Web as widely used with ontology languages like OWL or RDF

    Fifty years of Hoare's Logic

    Get PDF
    We present a history of Hoare's logic.Comment: 79 pages. To appear in Formal Aspects of Computin

    Z2SAL: a translation-based model checker for Z

    No full text
    Despite being widely known and accepted in industry, the Z formal specification language has not so far been well supported by automated verification tools, mostly because of the challenges in handling the abstraction of the language. In this paper we discuss a novel approach to building a model-checker for Z, which involves implementing a translation from Z into SAL, the input language for the Symbolic Analysis Laboratory, a toolset which includes a number of model-checkers and a simulator. The Z2SAL translation deals with a number of important issues, including: mapping unbounded, abstract specifications into bounded, finite models amenable to a BDD-based symbolic checker; converting a non-constructive and piecemeal style of functional specification into a deterministic, automaton-based style of specification; and supporting the rich set-based vocabulary of the Z mathematical toolkit. This paper discusses progress made towards implementing as complete and faithful a translation as possible, while highlighting certain assumptions, respecting certain limitations and making use of available optimisations. The translation is illustrated throughout with examples; and a complete working example is presented, together with performance data
    • ā€¦
    corecore