2,916 research outputs found

    Classical Cryptographic Protocols in a Quantum World

    Get PDF
    Cryptographic protocols, such as protocols for secure function evaluation (SFE), have played a crucial role in the development of modern cryptography. The extensive theory of these protocols, however, deals almost exclusively with classical attackers. If we accept that quantum information processing is the most realistic model of physically feasible computation, then we must ask: what classical protocols remain secure against quantum attackers? Our main contribution is showing the existence of classical two-party protocols for the secure evaluation of any polynomial-time function under reasonable computational assumptions (for example, it suffices that the learning with errors problem be hard for quantum polynomial time). Our result shows that the basic two-party feasibility picture from classical cryptography remains unchanged in a quantum world.Comment: Full version of an old paper in Crypto'11. Invited to IJQI. This is authors' copy with different formattin

    TumbleBit: an untrusted Bitcoin-compatible anonymous payment hub

    Get PDF
    This paper presents TumbleBit, a new unidirectional unlinkable payment hub that is fully compatible with today s Bitcoin protocol. TumbleBit allows parties to make fast, anonymous, off-blockchain payments through an untrusted intermediary called the Tumbler. TumbleBits anonymity properties are similar to classic Chaumian eCash: no one, not even the Tumbler, can link a payment from its payer to its payee. Every payment made via TumbleBit is backed by bitcoins, and comes with a guarantee that Tumbler can neither violate anonymity, nor steal bitcoins, nor print money by issuing payments to itself. We prove the security of TumbleBit using the real/ideal world paradigm and the random oracle model. Security follows from the standard RSA assumption and ECDSA unforgeability. We implement TumbleBit, mix payments from 800 users and show that TumbleBits offblockchain payments can complete in seconds.https://eprint.iacr.org/2016/575.pdfPublished versio

    Can Alice and Bob Guarantee Output to Carol?

    Get PDF
    In the setting of solitary output computations, only a single designated party learns the output of some function applied to the private inputs of all participating parties with the guarantee that nothing beyond the output is revealed. The setting of solitary output functionalities is a special case of secure multiparty computation, which allows a set of mutually distrusting parties to compute some function of their private inputs. The computation should guarantee some security properties, such as correctness, privacy, fairness, and output delivery. Full security captures all these properties together. Solitary output computation is a common setting that has become increasingly important, as it is relevant to many real-world scenarios, such as federated learning and set disjointness. In the set-disjointness problem, a set of parties with private datasets wish to convey to another party whether they have a common input. In this work, we investigate the limits of achieving set-disjointness which already has numerous applications and whose feasibility (under non-trivial conditions) was left open in the work of Halevi et al. (TCC 2019). Towards resolving this, we completely characterize the set of Boolean functions that can be computed in the three-party setting in the face of a malicious adversary that corrupts up to two of the parties. As a corollary, we characterize the family of set-disjointness functions that can be computed in this setting, providing somewhat surprising results regarding this family and resolving the open question posed by Halevi et al

    Secure Two-Party Computation with Fairness -- A Necessary Design Principle

    Get PDF
    Protocols for secure two-party computation enable a pair of mutually distrustful parties to carry out a joint computation of their private inputs without revealing anything but the output. One important security property that has been considered is that of fairness which guarantees that if one party learns the output then so does the other. In the case of two-party computation, fairness is not always possible, and in particular two parties cannot fairly toss a coin (Cleve, 1986). Despite this, it is actually possible to securely compute many two-party functions with fairness (Gordon et al., 2008 and follow-up work). However, all two-party protocols known that achieve fairness have the unique property that the effective input of the corrupted party is determined at an arbitrary point in the protocol. This is in stark contrast to almost all other known protocols that have an explicit fixed round at which the inputs are committed. In this paper, we ask whether or not the property of not having an input committal round is inherent for achieving fairness for two parties. In order to do so, we revisit the definition of security of Micali and Rogaway (Technical report, 1992), that explicitly requires the existence of such a committal round. We adapt the definition of Canetti in the two-party setting to incorporate the spirit of a committal round, and show that under such a definition, it is impossible to achieve fairness for any non-constant two-party function. This result deepens our understanding as to the type of protocol construction that is needed for achieving fairness. In addition, our result discovers a fundamental difference between the definition of security of Micali and Rogaway and that of Canetti (Journal of Cryptology, 2000) which has become the standard today. Specifically, many functions can be securely computed with fairness under the definition of Canetti but no non-constant function can be securely computed with fairness under the definition of Micali and Rogaway

    Fair Computation with Rational Players

    Get PDF
    We consider the problem of fair multiparty computation, where fairness means (informally) that all parties should learn the correct output. A seminal result of Cleve (STOC 1986) shows that fairness is, in general, impossible to achieve if a majority of the parties is malicious. Here, we treat all parties as rational and seek to understand what can be done. Asharov et al. (Eurocrypt 2011) showed impossibility of rational fair computation in the two-party setting, for a particular function and a particular choice of utilities. We observe, however, that in their setting the parties have no strict incentive to compute the function even in an ideal world where fairness is guaranteed. Revisiting the problem, we show that rational fair computation is possible, for arbitrary functions, as long as the parties have a strict incentive to compute the function in an ideal world where fairness is guaranteed. Our results extend to more general utility functions that do not directly correspond to fairness, as well as to the multi-party setting. Our work thus shows a new setting in which game-theoretic considerations can be used to circumvent a cryptographic impossibility result

    On Fully Secure MPC with Solitary Output

    Get PDF
    We study the possibility of achieving full security, with guaranteed output delivery, for secure multiparty computation of functionalities where only one party receives output, to which we refer as solitary functionalities. In the standard setting where all parties receive an output, full security typically requires an honest majority; otherwise even just achieving fairness is impossible. However, for solitary functionalities, fairness is clearly not an issue. This raises the following question: Is full security with no honest majority possible for all solitary functionalities? We give a negative answer to this question, by showing the existence of solitary functionalities that cannot be computed with full security. While such a result cannot be proved using fairness based arguments, our proof builds on the classical proof technique of Cleve (STOC 1986) for ruling out fair coin-tossing and extends it in a nontrivial way. On the positive side, we show that full security against any number of malicious parties is achievable for many natural and useful solitary functionalities, including ones for which the multi-output version cannot be realized with full security

    A Full Characterization of Functions that Imply Fair Coin Tossing and Ramifications to Fairness

    Get PDF
    It is well known that it is impossible for two parties to toss a coin fairly (Cleve, STOC 1986). This result implies that it is impossible to securely compute with fairness any function that can be used to toss a coin fairly. In this paper, we focus on the class of deterministic Boolean functions with finite domain, and we ask for which functions in this class is it possible to information-theoretically toss an unbiased coin, given a protocol for securely computing the function with fairness. We provide a complete characterization of the functions in this class that imply and do not imply fair coin tossing. This characterization extends our knowledge of which functions cannot be securely computed with fairness. In addition, it provides a focus as to which functions may potentially be securely computed with fairness, since a function that cannot be used to fairly toss a coin is not ruled out by the impossibility result of Cleve (which is the only known impossibility result for fairness). In addition to the above, we draw corollaries to the feasibility of achieving fairness in two possible fail-stop models
    • …
    corecore