148 research outputs found

    CAD system for early diagnosis of diabetic retinopathy based on 3D extracted imaging markers.

    Get PDF
    This dissertation makes significant contributions to the field of ophthalmology, addressing the segmentation of retinal layers and the diagnosis of diabetic retinopathy (DR). The first contribution is a novel 3D segmentation approach that leverages the patientspecific anatomy of retinal layers. This approach demonstrates superior accuracy in segmenting all retinal layers from a 3D retinal image compared to current state-of-the-art methods. It also offers enhanced speed, enabling potential clinical applications. The proposed segmentation approach holds great potential for supporting surgical planning and guidance in retinal procedures such as retinal detachment repair or macular hole closure. Surgeons can benefit from the accurate delineation of retinal layers, enabling better understanding of the anatomical structure and more effective surgical interventions. Moreover, real-time guidance systems can be developed to assist surgeons during procedures, improving overall patient outcomes. The second contribution of this dissertation is the introduction of a novel computeraided diagnosis (CAD) system for precise identification of diabetic retinopathy. The CAD system utilizes 3D-OCT imaging and employs an innovative approach that extracts two distinct features: first-order reflectivity and 3D thickness. These features are then fused and used to train and test a neural network classifier. The proposed CAD system exhibits promising results, surpassing other machine learning and deep learning algorithms commonly employed in DR detection. This demonstrates the effectiveness of the comprehensive analysis approach employed by the CAD system, which considers both low-level and high-level data from the 3D retinal layers. The CAD system presents a groundbreaking contribution to the field, as it goes beyond conventional methods, optimizing backpropagated neural networks to integrate multiple levels of information effectively. By achieving superior performance, the proposed CAD system showcases its potential in accurately diagnosing DR and aiding in the prevention of vision loss. In conclusion, this dissertation presents novel approaches for the segmentation of retinal layers and the diagnosis of diabetic retinopathy. The proposed methods exhibit significant improvements in accuracy, speed, and performance compared to existing techniques, opening new avenues for clinical applications and advancements in the field of ophthalmology. By addressing future research directions, such as testing on larger datasets, exploring alternative algorithms, and incorporating user feedback, the proposed methods can be further refined and developed into robust, accurate, and clinically valuable tools for diagnosing and monitoring retinal diseases

    DCNN-based embedded models for parallel diagnosis of ocular diseases

    Get PDF
    An automated system for detecting ocular diseases with computer-aided tools is essential to identify different eye disorders through fundus pictures. This is because diagnosing ocular illnesses manually is a complicated, time-consuming, and error-prone process. In this research, two multi-label embedded architectures based on a deep learning strategy were proposed for ocular disease recognition and classification. The ODIR (Ocular Disease Intelligent Recognition) dataset was adopted for those models. The suggested designs were implemented as parallel systems. The first model was developed as a parallel embedded system that leverages transfer learning to implement its classifiers. The implementation of these classifiers utilized the deep learning network from VGG16, while the second model was introduced with a parallel architecture, and its classifiers were implemented based on newly proposed deep learning networks. These networks were notable for their small size, limited layers, speedy response, and accurate performance. Therefore, the new proposed design has several benefits, like a small classification network size (20 % of VGG16), enhanced speed, and reduced energy consumption, as well as the suitability for IoT applications that support smart systems like Raspberry Pi and Self-powered components, which possess the ability to function as long as a charged battery is available. The highest accuracy of 0.9974 and 0.96 has been obtained in both proposed models for Myopia ocular disease detection and classification. Compared to research that had been presented in the same field, the performance accuracy of each of the two models shown was high. The P3448-0000 Jetson Nano Developer Kit is used to implement both of the proposed embedded model

    Computational Methods for Image Acquisition and Analysis with Applications in Optical Coherence Tomography

    Get PDF
    The computational approach to image acquisition and analysis plays an important role in medical imaging and optical coherence tomography (OCT). This thesis is dedicated to the development and evaluation of algorithmic solutions for better image acquisition and analysis with a focus on OCT retinal imaging. For image acquisition, we first developed, implemented, and systematically evaluated a compressive sensing approach for image/signal acquisition for single-pixel camera architectures and an OCT system. Our evaluation outcome provides a detailed insight into implementing compressive data acquisition of those imaging systems. We further proposed a convolutional neural network model, LSHR-Net, as the first deep-learning imaging solution for the single-pixel camera. This method can achieve better accuracy, hardware-efficient image acquisition and reconstruction than the conventional compressive sensing algorithm. Three image analysis methods were proposed to achieve retinal OCT image analysis with high accuracy and robustness. We first proposed a framework for healthy retinal layer segmentation. Our framework consists of several image processing algorithms specifically aimed at segmenting a total of 12 thin retinal cell layers, outperforming other segmentation methods. Furthermore, we proposed two deep-learning-based models to segment retinal oedema lesions in OCT images, with particular attention on processing small-scale datasets. The first model leverages transfer learning to implement oedema segmentation and achieves better accuracy than comparable methods. Based on the meta-learning concept, a second model was designed to be a solution for general medical image segmentation. The results of this work indicate that our model can be applied to retinal OCT images and other small-scale medical image data, such as skin cancer, demonstrated in this thesis

    Role of deep learning in predicting aging-related diseases:A scoping review

    Get PDF
    Aging refers to progressive physiological changes in a cell, an organ, or the whole body of an individual, over time. Aging-related diseases are highly prevalent and could impact an individual’s physical health. Recently, artificial intelligence (AI) methods have been used to predict aging-related diseases and issues, aiding clinical providers in decision-making based on patient’s medical records. Deep learning (DL), as one of the most recent generations of AI technologies, has embraced rapid progress in the early prediction and classification of aging-related issues. In this paper, a scoping review of publications using DL approaches to predict common aging-related diseases (such as age-related macular degeneration, cardiovascular and respiratory diseases, arthritis, Alzheimer’s and lifestyle patterns related to disease progression), was performed. Google Scholar, IEEE and PubMed are used to search DL papers on common aging-related issues published between January 2017 and August 2021. These papers were reviewed, evaluated, and the findings were summarized. Overall, 34 studies met the inclusion criteria. These studies indicate that DL could help clinicians in diagnosing disease at its early stages by mapping diagnostic predictions into observable clinical presentations; and achieving high predictive performance (e.g., more than 90% accurate predictions of diseases in aging)

    Deep Representation Learning with Limited Data for Biomedical Image Synthesis, Segmentation, and Detection

    Get PDF
    Biomedical imaging requires accurate expert annotation and interpretation that can aid medical staff and clinicians in automating differential diagnosis and solving underlying health conditions. With the advent of Deep learning, it has become a standard for reaching expert-level performance in non-invasive biomedical imaging tasks by training with large image datasets. However, with the need for large publicly available datasets, training a deep learning model to learn intrinsic representations becomes harder. Representation learning with limited data has introduced new learning techniques, such as Generative Adversarial Networks, Semi-supervised Learning, and Self-supervised Learning, that can be applied to various biomedical applications. For example, ophthalmologists use color funduscopy (CF) and fluorescein angiography (FA) to diagnose retinal degenerative diseases. However, fluorescein angiography requires injecting a dye, which can create adverse reactions in the patients. So, to alleviate this, a non-invasive technique needs to be developed that can translate fluorescein angiography from fundus images. Similarly, color funduscopy and optical coherence tomography (OCT) are also utilized to semantically segment the vasculature and fluid build-up in spatial and volumetric retinal imaging, which can help with the future prognosis of diseases. Although many automated techniques have been proposed for medical image segmentation, the main drawback is the model's precision in pixel-wise predictions. Another critical challenge in the biomedical imaging field is accurately segmenting and quantifying dynamic behaviors of calcium signals in cells. Calcium imaging is a widely utilized approach to studying subcellular calcium activity and cell function; however, large datasets have yielded a profound need for fast, accurate, and standardized analyses of calcium signals. For example, image sequences from calcium signals in colonic pacemaker cells ICC (Interstitial cells of Cajal) suffer from motion artifacts and high periodic and sensor noise, making it difficult to accurately segment and quantify calcium signal events. Moreover, it is time-consuming and tedious to annotate such a large volume of calcium image stacks or videos and extract their associated spatiotemporal maps. To address these problems, we propose various deep representation learning architectures that utilize limited labels and annotations to address the critical challenges in these biomedical applications. To this end, we detail our proposed semi-supervised, generative adversarial networks and transformer-based architectures for individual learning tasks such as retinal image-to-image translation, vessel and fluid segmentation from fundus and OCT images, breast micro-mass segmentation, and sub-cellular calcium events tracking from videos and spatiotemporal map quantification. We also illustrate two multi-modal multi-task learning frameworks with applications that can be extended to other domains of biomedical applications. The main idea is to incorporate each of these as individual modules to our proposed multi-modal frameworks to solve the existing challenges with 1) Fluorescein angiography synthesis, 2) Retinal vessel and fluid segmentation, 3) Breast micro-mass segmentation, and 4) Dynamic quantification of calcium imaging datasets

    Retinal image quality assessment using deep convolutional neural networks

    Get PDF
    Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Informática Médica)Diabetic Retinopathy (DR) and diabetic macular edema (DME) are the damages caused to the retina and are complications that can affect the diabetic population. Diabetic retinopathy (DR), is the most common disease due to the presence of exudates and has three levels of severity, such as mild, moderate and severe, depending on the exudates distribution in the retina. For screening of diabetic retinopathy or a population-based clinical study, a large number of digital fundus images are captured and to be possible to recognize the signs of DR and DME, it is necessary that the images have quality, because low-quality images may force the patient to return for a second examination, wasting time and possibly delaying treatment. These images are evaluated by trained human experts, which can be a time-consuming and expensive task due to the number of images that need to be examined. Therefore, this is a field that would be hugely benefited with the development of an automated eye fundus quality assessment and analysis systems. It can potentially facilitate health care in remote regions and in developing countries where reading skills are scarce. Deep Learning is a kind of Machine Learning method that involves learning multi-level representations that begin with raw data entry and gradually moves to more abstract levels through non-linear transformations. With enough training data and sufficiently deep architectures, neural networks, such as Convolutional Neural Networks (CNN), can learn very complex functions and discover complex structures in the data. Thus, Deep Learning emerges as a powerful tool for medical image analysis and evaluation of retinal image quality using computer-aided diagnosis. Therefore, the aim of this study is to automatically assess all the three quality parameters alone (focus, illumination and color), and then an overall quality of fundus images assessment, classifying the images into the classes “accept” or “reject with a Deep Learning approach using convolutional neural networks (CNN). For the overall classification, the following results were obtained: test accuracy=97.89%, SN=97.9%, AUC=0.98 and 1-score=97.91%.A retinopatia diabética (RD) e o edema macular diabético (EMD) são patologias da retina e são uma complicação que pode afetar a população diabética. A retinopatia diabética é a doença mais comum devido à presença de exsudatos e possui três níveis de gravidade, como leve, moderado e grave, dependendo da distribuição dos exsudatos na retina. Para triagem da retinopatia diabética ou estudo clínico de base populacional, um grande número de imagens digitais de fundo do olho são capturadas e para ser possível reconhecer os sinais da RD e EMD, é necessário que as imagens tenham qualidade, pois imagens de baixa qualidade podem forçar o paciente a retornar para um segundo exame, perdendo tempo e, possivelmente, retardando o tratamento. Essas imagens são avaliadas por especialistas humanos treinados, o que pode ser uma tarefa demorada e cara devido ao número de imagens que precisam de ser examinadas. Portanto, este é um campo que seria enormemente beneficiado com o desenvolvimento de sistemas automatizados de avaliação e análise da qualidade da imagem do fundo de olho. Pode potencialmente facilitar a assistência médica em regiões remotas e em países em desenvolvimento, onde as habilidades de leitura são escassas. Deep Learning é um tipo de método de Machine Learning que envolve a aprendizagem de representações em vários níveis que começam com a entrada de dados brutos e gradualmente se transformam para níveis mais abstratos através de transformações não lineares, para se obterem as previsões. Com dados de treino suficientes e arquiteturas suficientemente profundas, as redes neuronais, como as Convolutional Neural Networks (CNN), podem aprender funções muito complexas e descobrir estruturas complexas nos dados. Assim, o Deep Learning surge como uma ferramenta poderosa para analisar imagens médicas para avaliação da qualidade da retina, usando diagnóstico auxiliado por computador a partir do fundo do olho. Portanto, o objetivo deste estudo é avaliar automaticamente a qualidade geral das imagens do fundo, classificando as imagens em “aceites” ou “rejeitadas”, com base em três parâmetros principais, como o foco, a iluminação e cor com abordagem de Deep Learning usando convolutional neural networks (CNN). Para a classificação geral da qualidade das imagens, obtiveram-se os seguintes resultados: acurácia do teste = 97,89%, SN = 97,9%, AUC = 0,98 e 1-score=97.91%
    corecore