331 research outputs found

    Towards Autonomous Operation of Robonaut 2

    Get PDF
    The Robonaut 2 (R2) platform, as shown in Figure 1, was designed through a collaboration between NASA and General Motors to be a capable robotic assistant with the dexterity similar to a suited astronaut [1]. An R2 robot was sent to the International Space Station (ISS) in February 2011 and, in doing so, became the first humanoid robot in space. Its capabilities are presently being tested and expanded to increase its usefulness to the crew. Current work on R2 includes the addition of a mobility platform to allow the robot to complete tasks (such as cleaning, maintenance, or simple construction activities) both inside and outside of the ISS. To support these new activities, R2's software architecture is being developed to provide efficient ways of programming robust and autonomous behavior. In particular, a multi-tiered software architecture is proposed that combines principles of low-level feedback control with higher-level planners that accomplish behavioral goals at the task level given the run-time context, user constraints, the health of the system, and so on. The proposed architecture is shown in Figure 2. At the lowest-level, the resource level, there exists the various sensory and motor signals available to the system. The sensory signals for a robot such as R2 include multiple channels of force/torque data, joint or Cartesian positions calculated through the robot's proprioception, and signals derived from objects observable by its cameras

    Predictive Interfaces for Long-Distance Tele-Operations

    Get PDF
    We address the development of predictive tele-operator interfaces for humanoid robots with respect to two basic challenges. Firstly, we address automating the transition from fully tele-operated systems towards degrees of autonomy. Secondly, we develop compensation for the time-delay that exists when sending telemetry data from a remote operation point to robots located at low earth orbit and beyond. Humanoid robots have a great advantage over other robotic platforms for use in space-based construction and maintenance because they can use the same tools as astronauts do. The major disadvantage is that they are difficult to control due to the large number of degrees of freedom, which makes it difficult to synthesize autonomous behaviors using conventional means. We are working with the NASA Johnson Space Center's Robonaut which is an anthropomorphic robot with fully articulated hands, arms, and neck. We have trained hidden Markov models that make use of the command data, sensory streams, and other relevant data sources to predict a tele-operator's intent. This allows us to achieve subgoal level commanding without the use of predefined command dictionaries, and to create sub-goal autonomy via sequence generation from generative models. Our method works as a means to incrementally transition from manual tele-operation to semi-autonomous, supervised operation. The multi-agent laboratory experiments conducted by Ambrose et. al. have shown that it is feasible to directly tele-operate multiple Robonauts with humans to perform complex tasks such as truss assembly. However, once a time-delay is introduced into the system, the rate of tele\ioperation slows down to mimic a bump and wait type of activity. We would like to maintain the same interface to the operator despite time-delays. To this end, we are developing an interface which will allow for us to predict the intentions of the operator while interacting with a 3D virtual representation of the expected state of the robot. The predictive interface anticipates the intention of the operator, and then uses this prediction to initiate appropriate sub-goal autonomy tasks

    Human-Robot Control Strategies for the NASA/DARPA Robonaut

    Get PDF
    The Robotic Systems Technology Branch at the NASA Johnson Space Center (JSC) is currently developing robot systems to reduce the Extra-Vehicular Activity (EVA) and planetary exploration burden on astronauts. One such system, Robonaut, is capable of interfacing with external Space Station systems that currently have only human interfaces. Robonaut is human scale, anthropomorphic, and designed to approach the dexterity of a space-suited astronaut. Robonaut can perform numerous human rated tasks, including actuating tether hooks, manipulating flexible materials, soldering wires, grasping handrails to move along space station mockups, and mating connectors. More recently, developments in autonomous control and perception for Robonaut have enabled dexterous, real-time man-machine interaction. Robonaut is now capable of acting as a practical autonomous assistant to the human, providing and accepting tools by reacting to body language. A versatile, vision-based algorithm for matching range silhouettes is used for monitoring human activity as well as estimating tool pose

    Modeling and Classifying Six-Dimensional Trajectories for Teleoperation Under a Time Delay

    Get PDF
    Within the context of teleoperating the JSC Robonaut humanoid robot under 2-10 second time delays, this paper explores the technical problem of modeling and classifying human motions represented as six-dimensional (position and orientation) trajectories. A dual path research agenda is reviewed which explored both deterministic approaches and stochastic approaches using Hidden Markov Models. Finally, recent results are shown from a new model which represents the fusion of these two research paths. Questions are also raised about the possibility of automatically generating autonomous actions by reusing the same predictive models of human behavior to be the source of autonomous control. This approach changes the role of teleoperation from being a stand-in for autonomy into the first data collection step for developing generative models capable of autonomous control of the robot

    Development of Methodologies, Metrics, and Tools for Investigating Human-Robot Interaction in Space Robotics

    Get PDF
    Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator (SPDM), Robonaut, and Space Exploration Vehicle (SEV), as well as interviews with robotics trainers, robot operators, and developers of gesture interfaces. A survey of methods and metrics used in HRI was completed to identify those most applicable to space robotics. These methods and metrics included techniques and tools associated with task performance, the quantification of human-robot interactions and communication, usability, human workload, and situation awareness. The need for more research in areas such as natural interfaces, compensations for loss of signal and poor video quality, psycho-physiological feedback, and common HRI testbeds were identified. The initial findings from these activities and planned future research are discussed. Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator (SPDM), Robonaut, and Space Exploration Vehicle (SEV), as well as interviews with robotics trainers, robot operators, and developers of gesture interfaces. A survey of methods and metrics used in HRI was completed to identify those most applicable to space robotics. These methods and metrics included techniques and tools associated with task performance, the quantification of human-robot interactions and communication, usability, human workload, and situation awareness. The need for more research in areas such as natural interfaces, compensations for loss of signal and poor video quality, psycho-physiological feedback, and common HRI testbeds were identified. The initial findings from these activities and planned future research are discussed

    Robonaut 2 and Watson: Cognitive Dexterity for Future Exploration

    Get PDF
    Future exploration missions will dictate a level of autonomy never before experienced in human spaceflight. Mission plans involving the uncrewed phases of complex human spacecraft in deep space will require a coordinated autonomous capability to be able to maintain the spacecraft when ground control is not available. One promising direction involves embedding intelligence into the system design both through the employment of state-of-the-art system engineering principles as well as through the creation of a cognitive network between a smart spacecraft or habitat and embodiments of cognitive agents. The work described here details efforts to integrate IBM's Watson and other cognitive computing services into NASA Johnson Space Center (JSC)'s Robonaut 2 (R2) anthropomorphic robot. This paper also discusses future directions this work will take. A cognitive spacecraft management system that is able to seamlessly collect data from subsystems, determine corrective actions, and provide commands to enable those actions is the end goal. These commands could be to embedded spacecraft systems or to a set of robotic assets that are tied into the cognitive system. An exciting collaboration with Woodside provides a promising Earth-bound testing analog, as controlling and maintaining not normally manned off-shore platforms have similar constraints to the space missions described

    Supervising Remote Humanoids Across Intermediate Time Delay

    Get PDF
    The President's Vision for Space Exploration, laid out in 2004, relies heavily upon robotic exploration of the lunar surface in early phases of the program. Prior to the arrival of astronauts on the lunar surface, these robots will be required to be controlled across space and time, posing a considerable challenge for traditional telepresence techniques. Because time delays will be measured in seconds, not minutes as is the case for Mars Exploration, uploading the plan for a day seems excessive. An approach for controlling humanoids under intermediate time delay is presented. This approach uses software running within a ground control cockpit to predict an immersed robot supervisor's motions which the remote humanoid autonomously executes. Initial results are presented

    Towards Supervising Remote Dexterous Robots Across Time Delay

    Get PDF
    The President s Vision for Space Exploration, laid out in 2004, relies heavily upon robotic exploration of the lunar surface in early phases of the program. Prior to the arrival of astronauts on the lunar surface, these robots will be required to be controlled across space and time, posing a considerable challenge for traditional telepresence techniques. Because time delays will be measured in seconds, not minutes as is the case for Mars Exploration, uploading the plan for a day seems excessive. An approach for controlling dexterous robots under intermediate time delay is presented, in which software running within a ground control cockpit predicts the intention of an immersed robot supervisor, then the remote robot autonomously executes the supervisor s intended tasks. Initial results are presented

    Towards Autonomous Operations of the Robonaut 2 Humanoid Robotic Testbed

    Get PDF
    The Robonaut project has been conducting research in robotics technology on board the International Space Station (ISS) since 2012. Recently, the original upper body humanoid robot was upgraded by the addition of two climbing manipulators ("legs"), more capable processors, and new sensors, as shown in Figure 1. While Robonaut 2 (R2) has been working through checkout exercises on orbit following the upgrade, technology development on the ground has continued to advance. Through the Active Reduced Gravity Offload System (ARGOS), the Robonaut team has been able to develop technologies that will enable full operation of the robotic testbed on orbit using similar robots located at the Johnson Space Center. Once these technologies have been vetted in this way, they will be implemented and tested on the R2 unit on board the ISS. The goal of this work is to create a fully-featured robotics research platform on board the ISS to increase the technology readiness level of technologies that will aid in future exploration missions. Technology development has thus far followed two main paths, autonomous climbing and efficient tool manipulation. Central to both technologies has been the incorporation of a human robotic interaction paradigm that involves the visualization of sensory and pre-planned command data with models of the robot and its environment. Figure 2 shows screenshots of these interactive tools, built in rviz, that are used to develop and implement these technologies on R2. Robonaut 2 is designed to move along the handrails and seat track around the US lab inside the ISS. This is difficult for many reasons, namely the environment is cluttered and constrained, the robot has many degrees of freedom (DOF) it can utilize for climbing, and remote commanding for precision tasks such as grasping handrails is time-consuming and difficult. Because of this, it is important to develop the technologies needed to allow the robot to reach operator-specified positions as autonomously as possible. The most important progress in this area has been the work towards efficient path planning for high DOF, highly constrained systems. Other advances include machine vision algorithms for localizing and automatically docking with handrails, the ability of the operator to place obstacles in the robot's virtual environment, autonomous obstacle avoidance techniques, and constraint management

    Robonaut Mobile Autonomy: Initial Experiments

    Get PDF
    A mobile version of the NASA/DARPA Robonaut humanoid recently completed initial autonomy trials working directly with humans in cluttered environments. This compact robot combines the upper body of the Robonaut system with a Segway Robotic Mobility Platform yielding a dexterous, maneuverable humanoid ideal for interacting with human co-workers in a range of environments. This system uses stereovision to locate human teammates and tools and a navigation system that uses laser range and vision data to follow humans while avoiding obstacles. Tactile sensors provide information to grasping algorithms for efficient tool exchanges. The autonomous architecture utilizes these pre-programmed skills to form complex behaviors. The initial behavior demonstrates a robust capability to assist a human by acquiring a tool from a remotely located individual and then following the human in a cluttered environment with the tool for future use
    corecore