14 research outputs found

    Modeling the power consumption of a Wifibot and studying the role of communication cost in operation time

    Get PDF
    Mobile robots are becoming part of our every day living at home, work or entertainment. Due to their limited power capabilities, the development of new energy consumption models can lead to energy conservation and energy efficient designs. In this paper, we carry out a number of experiments and we focus on the motors power consumption of a specific robot called Wifibot. Based on the experimentation results, we build models for different speed and acceleration levels. We compare the motors power consumption to other robot running modes. We, also, create a simple robot network scenario and we investigate whether forwarding data through a closer node could lead to longer operation times. We assess the effect energy capacity, traveling distance and data rate on the operation time

    The Autonomous Photovoltaic MarXbot

    Full text link

    Communicating Dominance in a Nonanthropomorphic Robot Using Locomotion

    Get PDF
    Dominance is a key aspect of interpersonal relationships. To what extent do nonverbal indicators related to dominance status translate to a nonanthropomorphic robot? An experiment (N = 25) addressed whether a mobile robot's motion style can influence people's perceptions of its status. Using concepts from improv theater literature, we developed two motion styles across three scenarios (robot makes lateral motions, approaches, and departs) to communicate a robot's dominance status through nonverbal expression. In agreement with the literature, participants described a motion style that was fast, in the foreground, and more animated as higher status than a motion style that was slow, in the periphery, and less animated. Participants used fewer negative emotion words to describe the robot with the purportedly high-status movements versus the purportedly low-status movements, but used more negative emotion words to describe the robot when it made departing motions that occurred in the same style. This result provides evidence that guidelines from improvisational theater for using nonverbal expression to perform interpersonal status can be applied to influence perception of a nonanthropomorphic robot's status, thus suggesting that useful models for more complicated behaviors might similarly be derived from performance literature and theory

    Cutting Down the Energy Consumed by Domestic Robots: Insights from Robotic Vacuum Cleaners

    Get PDF
    The market of domestic service robots, and especially vacuum cleaners, has kept growing during the past decade. According to the International Federation of Robotics, more than 1 million units were sold worldwide in 2010. Currently, there is no in-depth analysis of the energetic impact of the introduction of this technology on the mass market. This topic is of prime importance in our energy-dependant society. This study aims at identifying key technologies leading to the reduction of the energy consumption of a domestic mobile robot, by exploring the design space using technologies issued from the robotic research field, such as the various localization and navigation strategies. This approach is validated through an in-depth analysis of seven vacuum cleaning robots. These results are used to build a global assessment of the influential parameters. The major outcome is the assessment of the positive impact of both the ceiling-based visual localization and the laser-based localization approaches

    Lessons Learned from Robotic Vacuum Cleaners Entering in the Home Ecosystem

    Get PDF
    This article considers the suitability of current robots designed to assist humans in accomplishing their daily domestic tasks. With several million units sold worldwide, robotic vacuum cleaners are currently the figurehead in this field. As such, we will use them to investigate the following key question: How does a service cleaning robot performs in a real household? One must consider not just how well a robot accomplishes its task, but also how well it integrates inside the user's space and perception. We took a holistic approach to addressing these topics by combining two studies in order to build a common ground. In the first of these studies, we analyzed a sample of seven robots to identify the influence of key technologies, like the navigation system, on technical performance. In the second study, we conducted an ethnographic study within nine households to identify users' needs. This innovative approach enables us to recommend a number of concrete improvements aimed at fulfilling users' needs by leveraging current technologies to reach new possibilities

    A Holistic Approach to Energy Harvesting for Indoor Robots:Theoretical Framework and Experimental Validations

    Get PDF
    Service robotics is a fast expanding market. Inside households, domestic robots can now accomplish numerous tasks, such as floor cleaning, surveillance, or remote presence. Their sales have considerably increased over the past years. Whereas 1.05 million domestic service robots were reportedly sold in 2009, at least 2.7 million units were sold in 2013. Consequently, this growth gives rise to an increase of the energy needs to power such a large and growing fleet of robots. However, the unique properties of mobile robots open some new fields of research. We must find technologies that are suitable for decreasing the energy requirements and thus further advance towards a sustainable development. This thesis tackles two fundamental goals based on a holistic approach of the global problem. The first goal is to reduce the energy needs by identifying key technologies in making energy-efficient robots. The second goal is to leverage innovative indoor energy sources to increase the ratio of renewable energies scavenged from the environment. To achieve our first goal, new energy-wise metrics are applied to real robotic hardware. This gives us the means to assess the impact of some technologies on the overall energy balance. First, we analysed seven robotic vacuum cleaners from a representative sample of the market that encompasses a wide variety of technologies. Simultaneous Localisation and Mapping (SLAM) was identified as a key technology to reduce energy needs when carrying out such tasks. Even if the instantaneous power is slightly increased, the completion time of the task is greatly reduced. We also analysed the needed sensors to achieve SLAM, as they are largely diversified. This work tested three sensors using three different technologies. We identified several important metrics. As of our second goal, potential energy sources are compared to the needs of an indoor robot. The sunshine coming through a building's apertures is identified as a promising source of renewable power. Numerical simulations showed how a mobile robot is mandatory to take full advantage of this previously unseen situation, as well as the influence of the geometric parameters on the yearly energy income under ideal sunny conditions. When considering a real system, the major difficulty to overcome is the tracking of the sunbeam along the day. The proposed algorithm uses a hybrid method. A high-level cognitive approach is responsible for the initial placement. Following realignments during the day are performed by a low-level reactive behaviour. A solar harvesting module was developed for our research robot. The tests conducted inside a controlled environment demonstrate the feasibility of this concept and the good performances of the aforementioned algorithm. Based on a realistic scenario and weather conditions, we computed that between 1 and 14 days of recharge could be necessary for a single cleaning task. In the future, our innovative technology could greatly lower the energy needs of service robots. However, it is not completely possible to abandon the recharge station due to occasional bad weather. The acceptance of this technology inside the user's home ecosystem remains to be studied

    Living with a Vacuum Cleaning Robot: A 6-month Ethnographic Study

    Get PDF
    Little is known about the usage, adoption process and long-term effects of domestic service robots in people's homes. We investigated the usage, acceptance and process of adoption of a vacuum cleaning robot in nine households by means of a six month ethnographic study. Our major goals were to explore how the robot was used and integrated into daily practices, whether it was adopted in a durable way, and how it impacted its environment. We studied people's perception of the robot and how it evolved over time, kept track of daily routines, the usage patterns of cleaning tools, and social activities related to the robot. We integrated our results in an existing framework for domestic robot adoption and outlined similarities and differences to it. Finally, we identified several factors that promote or hinder the process of adopting a domestic service robot and make suggestions to further improve human-robot interactions and the design of functional home robots toward long-term acceptanc

    Living With a Vacuum Cleaning Robot - A 6-month Ethnographic Study

    Get PDF
    Little is known about the usage, adoption process and long-term effects of domestic service robots in people’s homes. We investigated the usage, acceptance and process of adoption of a vacuum cleaning robot in nine households by means of a six month ethnographic study. Our major goals were to explore how the robot was used and integrated into daily practices, whether it was adopted in a durable way, and how it impacted its environment. We studied people’s perception of the robot and how it evolved over time, kept track of daily routines, the usage patterns of cleaning tools, and social activities related to the robot. We integrated our results in an existing framework for domestic robot adoption and outlined similarities and differences to it. Finally, we identified several factors that promote or hinder the process of adopting a domestic service robot and make suggestions to further improve human-robot interactions and the design of functional home robots toward long-term acceptance
    corecore