194,679 research outputs found

    Towards Automated Test Sequence Generation

    Get PDF
    The article presents a novel control-flow based test sequence generation technique using UML 2.0 activity diagram, which is a behavioral type of UML diagram. Like other model-based techniques, this technique can be used in the earlier phases of the development process owing to the availability of the design models of the system. The activity diagram model is seamlessly converted into a colored Petri net. We proposed a technique that enables the automatic generation of test sequences according to a given coverage criteria from the execution of the colored Petri nets model. Two types of structural coverage criteria for AD based models, namely sequential and concurrent coverage are described. The proposed technique was applied to an example to demonstrate its feasibility and the generated test sequences were evaluated against selected coverage criteria. This technique can potentially be adapted to service oriented applications, workflows, and concurrent applications

    Towards Automated Test Sequence Generation

    Full text link

    Automated unique input output sequence generation for conformance testing of FSMs

    Get PDF
    This paper describes a method for automatically generating unique input output (UIO) sequences for FSM conformance testing. UIOs are used in conformance testing to verify the end state of a transition sequence. UIO sequence generation is represented as a search problem and genetic algorithms are used to search this space. Empirical evidence indicates that the proposed method yields considerably better (up to 62% better) results compared with random UIO sequence generation

    Model-Based Security Testing

    Full text link
    Security testing aims at validating software system requirements related to security properties like confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although security testing techniques are available for many years, there has been little approaches that allow for specification of test cases at a higher level of abstraction, for enabling guidance on test identification and specification as well as for automated test generation. Model-based security testing (MBST) is a relatively new field and especially dedicated to the systematic and efficient specification and documentation of security test objectives, security test cases and test suites, as well as to their automated or semi-automated generation. In particular, the combination of security modelling and test generation approaches is still a challenge in research and of high interest for industrial applications. MBST includes e.g. security functional testing, model-based fuzzing, risk- and threat-oriented testing, and the usage of security test patterns. This paper provides a survey on MBST techniques and the related models as well as samples of new methods and tools that are under development in the European ITEA2-project DIAMONDS.Comment: In Proceedings MBT 2012, arXiv:1202.582

    Estimating the feasibility of transition paths in extended finite state machines

    Get PDF
    There has been significant interest in automating testing on the basis of an extended finite state machine (EFSM) model of the required behaviour of the implementation under test (IUT). Many test criteria require that certain parts of the EFSM are executed. For example, we may want to execute every transition of the EFSM. In order to find a test suite (set of input sequences) that achieves this we might first derive a set of paths through the EFSM that satisfy the criterion using, for example, algorithms from graph theory. We then attempt to produce input sequences that trigger these paths. Unfortunately, however, the EFSM might have infeasible paths and the problem of determining whether a path is feasible is generally undecidable. This paper describes an approach in which a fitness function is used to estimate how easy it is to find an input sequence to trigger a given path through an EFSM. Such a fitness function could be used in a search-based approach in which we search for a path with good fitness that achieves a test objective, such as executing a particular transition, and then search for an input sequence that triggers the path. If this second search fails then we search for another path with good fitness and repeat the process. We give a computationally inexpensive approach (fitness function) that estimates the feasibility of a path. In order to evaluate this fitness function we compared the fitness of a path with the ease with which an input sequence can be produced using search to trigger the path and we used random sampling in order to estimate this. The empirical evidence suggests that a reasonably good correlation (0.72 and 0.62) exists between the fitness of a path, produced using the proposed fitness function, and an estimate of the ease with which we can randomly generate an input sequence to trigger the path

    Controllable Neural Story Plot Generation via Reinforcement Learning

    Full text link
    Language-modeling--based approaches to story plot generation attempt to construct a plot by sampling from a language model (LM) to predict the next character, word, or sentence to add to the story. LM techniques lack the ability to receive guidance from the user to achieve a specific goal, resulting in stories that don't have a clear sense of progression and lack coherence. We present a reward-shaping technique that analyzes a story corpus and produces intermediate rewards that are backpropagated into a pre-trained LM in order to guide the model towards a given goal. Automated evaluations show our technique can create a model that generates story plots which consistently achieve a specified goal. Human-subject studies show that the generated stories have more plausible event ordering than baseline plot generation techniques.Comment: Published in IJCAI 201
    • ā€¦
    corecore