9,795 research outputs found

    Imaging markers of disability in aquaporin-4 immunoglobulin G seropositive neuromyelitis optica: a graph theory study

    Get PDF
    Neuromyelitis optica spectrum disorders lack imaging biomarkers associated with disease course and supporting prognosis. This complex and heterogeneous set of disorders affects many regions of the central nervous system, including the spinal cord and visual pathway. Here, we use graph theory-based multimodal network analysis to investigate hypothesis-free mixed networks and associations between clinical disease with neuroimaging markers in 40 aquaporin-4-immunoglobulin G antibody seropositive patients (age = 48.16 ± 14.3 years, female:male = 36:4) and 31 healthy controls (age = 45.92 ± 13.3 years, female:male = 24:7). Magnetic resonance imaging measures included total brain and deep grey matter volumes, cortical thickness and spinal cord atrophy. Optical coherence tomography measures of the retina and clinical measures comprised of clinical attack types and expanded disability status scale were also utilized. For multimodal network analysis, all measures were introduced as nodes and tested for directed connectivity from clinical attack types and disease duration to systematic imaging and clinical disability measures. Analysis of variance, with group interactions, gave weights and significance for each nodal association (hyperedges). Connectivity matrices from 80% and 95% F-distribution networks were analyzed and revealed the number of combined attack types and disease duration as the most connected nodes, directly affecting changes in several regions of the central nervous system. Subsequent multivariable regression models, including interaction effects with clinical parameters, identified associations between decreased nucleus accumbens (β = −0.85, P = 0.021) and caudate nucleus (β = −0.61, P = 0.011) volumes with higher combined attack type count and longer disease duration, respectively. We also confirmed previously reported associations between spinal cord atrophy with increased number of clinical myelitis attacks. Age was the most important factor associated with normalized brain volume, pallidum volume, cortical thickness and the expanded disability status scale score. The identified imaging biomarker candidates warrant further investigation in larger-scale studies. Graph theory-based multimodal networks allow for connectivity and interaction analysis, where this method may be applied in other complex heterogeneous disease investigations with different outcome measures

    Radiotherapy planning for glioblastoma based on a tumor growth model: Improving target volume delineation

    Get PDF
    Glioblastoma are known to infiltrate the brain parenchyma instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In clinical practice, a uniform margin is applied to account for microscopic spread of disease. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth: Anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. A retrospective study involving 10 glioblastoma patients has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most crucial model input. We conclude that the tumor growth model provides a method to account for anisotropic growth patterns of glioblastoma, and may therefore provide a tool to make target delineation more objective and automated

    Navigation of brain networks

    Get PDF
    Understanding the mechanisms of neural communication in large-scale brain networks remains a major goal in neuroscience. We investigated whether navigation is a parsimonious routing model for connectomics. Navigating a network involves progressing to the next node that is closest in distance to a desired destination. We developed a measure to quantify navigation efficiency and found that connectomes in a range of mammalian species (human, mouse and macaque) can be successfully navigated with near-optimal efficiency (>80% of optimal efficiency for typical connection densities). Rewiring network topology or repositioning network nodes resulted in 45%-60% reductions in navigation performance. Specifically, we found that brain networks cannot be progressively rewired (randomized or clusterized) to result in topologies with significantly improved navigation performance. Navigation was also found to: i) promote a resource-efficient distribution of the information traffic load, potentially relieving communication bottlenecks; and, ii) explain significant variation in functional connectivity. Unlike prevalently studied communication strategies in connectomics, navigation does not mandate biologically unrealistic assumptions about global knowledge of network topology. We conclude that the wiring and spatial embedding of brain networks is conducive to effective decentralized communication. Graph-theoretic studies of the connectome should consider measures of network efficiency and centrality that are consistent with decentralized models of neural communication

    Integrated Research Plan to Assess the Combined Effects of Space Radiation, Altered Gravity, and Isolation and Confinement on Crew Health and Performance: Problem Statement

    Get PDF
    Future crewed exploration missions to Mars could last up to three years and will expose astronauts to unprecedented environmental challenges. Challenges to the nervous system during these missions will include factors of: space radiation that can damage sensitive neurons in the central nervous system (CNS); isolation and confinement can affect cognition and behavior; and altered gravity that will change the astronauts perception of their environment and their spatial orientation, and will affect their coordination, balance, and locomotion. In the past, effects of spaceflight stressors have been characterized individually. However, long-term, simultaneous exposure to multiple stressors will produce a range of interrelated behavioral and biological effects that have the potential to adversely affect operationally relevant crew performance. These complex environmental challenges might interact synergistically and increase the overall risk to the health and performance of the astronaut. Therefore, NASAs Human Research Program (HRP) has directed an integrated approach to characterize and mitigate the risk to the CNS from simultaneous exposure to these multiple spaceflight factors. The proposed research strategy focuses on systematically evaluating the relationships among three existing research risks associated with spaceflight: Risk of Acute (In-flight) and Late Central Nervous System Effects from Radiation (CNS), Risk of Adverse Cognitive or Behavioral Conditions and Psychiatric Disorders (BMed), and Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Spaceflight (SM). NASAs HRP approach is intended to identify the magnitude and types of interactions as they affect behavior, especially as it relates to operationally relevant performance (e.g., performance that depends on reaction time, procedural memory, etc.). In order to appropriately characterize this risk of multiple spaceflight environmental stressors, there is a recognition of the need to leverage research approaches using appropriate animal models and behavioral constructs. Very little has been documented on the combined effects of altered gravity, space radiation, and other psychological and cognitive stressors on the CNS. Preliminary evidence from rodents suggest that a combination of a minimum of exposures to even two of three stressors of: simulated space radiation, simulated microgravity, and simulated isolation and confinement, have produced different and more pronounced biological and performance effects than exposure to these same stressors individually. Structural and functional changes to the CNS of rodents exposed to transdisciplinary combined stressors indicate that important processes related to information processing are likely altered including impairment of exploratory and risk taking behaviors, as well as executive function including learning, memory, and cognitive flexibility all of which may be linked to changes in related operational relevant performance. The fully integrated research plan outlines approaches to evaluate how combined, potentially synergistic, impacts of simultaneous exposures to spaceflight hazards will affect an astronauts CNS and their operationally relevant performance during future exploration missions, including missions to the Moon and Mars. The ultimate goals are to derive risk estimates for the combined, potentially synergistic, effects of the three major spaceflight hazards that will establish acceptable maximum decrement or change in a physiological or behavioral parameters during or after spaceflight, the acceptable limit of exposure to a spaceflight factor, and to evaluate strategies to mitigate any associated decrements in operationally relevant performance

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 323)

    Get PDF
    This bibliography lists 125 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during April, 1989. Subject coverage includes; aerospace medicine and psychology, life support systems and controlled environments, safety equipment exobiology and extraterrestrial life, and flight crew behavior and performance
    • …
    corecore