39,599 research outputs found

    Towards automated data integration in software analytics

    Get PDF
    Software organizations want to be able to base their decisions on the latest set of available data and the real-time analytics derived from them. In order to support "real-time enterprise" for software organizations and provide information transparency for diverse stakeholders, we integrate heterogeneous data sources about software analytics, such as static code analysis, testing results, issue tracking systems, network monitoring systems, etc. To deal with the heterogeneity of the underlying data sources, we follow an ontology-based data integration approach in this paper and define an ontology that captures the semantics of relevant data for software analytics. Furthermore, we focus on the integration of such data sources by proposing two approaches: a static and a dynamic one. We first discuss the current static approach with a predefined set of analytic views representing software quality factors and further envision how this process could be automated in order to dynamically build custom user analysis using a semi-automatic platform for managing the lifecycle of analytics infrastructures.Peer ReviewedPostprint (author's final draft

    Towards Automated Data Integration in Software Analytics

    Full text link
    Software organizations want to be able to base their decisions on the latest set of available data and the real-time analytics derived from them. In order to support "real-time enterprise" for software organizations and provide information transparency for diverse stakeholders, we integrate heterogeneous data sources about software analytics, such as static code analysis, testing results, issue tracking systems, network monitoring systems, etc. To deal with the heterogeneity of the underlying data sources, we follow an ontology-based data integration approach in this paper and define an ontology that captures the semantics of relevant data for software analytics. Furthermore, we focus on the integration of such data sources by proposing two approaches: a static and a dynamic one. We first discuss the current static approach with a predefined set of analytic views representing software quality factors and further envision how this process could be automated in order to dynamically build custom user analysis using a semi-automatic platform for managing the lifecycle of analytics infrastructures.Comment: This is an author's accepted manuscript of a paper to be published by ACM in the 12th International Workshop on Real-Time Business Intelligence and Analytics (BIRTE@VLDB) 2018. The final authenticated version will be available through https://doi.org/10.1145/3242153.324215

    Attribute Identification and Predictive Customisation Using Fuzzy Clustering and Genetic Search for Industry 4.0 Environments

    Get PDF
    Today´s factory involves more services and customisation. A paradigm shift is towards “Industry 4.0” (i4) aiming at realising mass customisation at a mass production cost. However, there is a lack of tools for customer informatics. This paper addresses this issue and develops a predictive analytics framework integrating big data analysis and business informatics, using Computational Intelligence (CI). In particular, a fuzzy c-means is used for pattern recognition, as well as managing relevant big data for feeding potential customer needs and wants for improved productivity at the design stage for customised mass production. The selection of patterns from big data is performed using a genetic algorithm with fuzzy c-means, which helps with clustering and selection of optimal attributes. The case study shows that fuzzy c-means are able to assign new clusters with growing knowledge of customer needs and wants. The dataset has three types of entities: specification of various characteristics, assigned insurance risk rating, and normalised losses in use compared with other cars. The fuzzy c-means tool offers a number of features suitable for smart designs for an i4 environment

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications
    • …
    corecore