3,888 research outputs found

    Data Mining Applications in Higher Education and Academic Intelligence Management

    Get PDF
    Higher education institutions are nucleus of research and future development acting in a competitive environment, with the prerequisite mission to generate, accumulate and share knowledge. The chain of generating knowledge inside and among external organizations (such as companies, other universities, partners, community) is considered essential to reduce the limitations of internal resources and could be plainly improved with the use of data mining technologies. Data mining has proven to be in the recent years a pioneering field of research and investigation that faces a large variety of techniques applied in a multitude of areas, both in business and higher education, relating interdisciplinary studies and development and covering a large variety of practice. Universities require an important amount of significant knowledge mined from its past and current data sets using special methods and processes. The ways in which information and knowledge are represented and delivered to the university managers are in a continuous transformation due to the involvement of the information and communication technologies in all the academic processes. Higher education institutions have long been interested in predicting the paths of students and alumni (Luan, 2004), thus identifying which students will join particular course programs (Kalathur, 2006), and which students will require assistance in order to graduate. Another important preoccupation is the academic failure among students which has long fuelled a large number of debates. Researchers (Vandamme et al., 2007) attempted to classify students into different clusters with dissimilar risks in exam failure, but also to detect with realistic accuracy what and how much the students know, in order to deduce specific learning gaps (Piementel & Omar, 2005). The distance and on-line education, together with the intelligent tutoring systems and their capability to register its exchanges with students (Mostow et al., 2005) present various feasible information sources for the data mining processes. Studies based on collecting and interpreting the information from several courses could possibly assist teachers and students in the web-based learning setting (Myller et al., 2002). Scientists (Anjewierden et al., 2007) derived models for classifying chat messages using data mining techniques, in order to offer learners real-time adaptive feedback which could result in the improvement of learning environments. In scientific literature there are some studies which seek to classify students in order to predict their final grade based on features extracted from logged data ineducational web-based systems (Minaei-Bidgoli & Punch, 2003). A combination of multiple classifiers led to a significant improvement in classification performance through weighting the feature vectors. The author’s research directions through the data mining practices consist in finding feasible ways to offer the higher education institutions’ managers ample knowledge to prepare new hypothesis, in a short period of time, which was formerly rigid or unachievable, in view of large datasets and earlier methods. Therefore, the aim is to put forward a way to understand the students’ opinions, satisfactions and discontentment in the each element of the educational process, and to predict their preference in certain fields of study, the choice in continuing education, academic failure, and to offer accurate correlations between their knowledge and the requirements in the labor market. Some of the most interesting data mining processes in the educational field are illustrated in the present chapter, in which the author adds own ideas and applications in educational issues using specific data mining techniques. The organization of this chapter is as follows. Section 2 offers an insight of how data mining processes are being applied in the large spectrum of education, presenting recent applications and studies published in the scientific literature, significant to the development of this emerging science. In Section 3 the author introduces his work through a number of new proposed directions and applications conducted over data collected from the students of the Babes-Bolyai University, using specific data mining classification learning and clustering methods. Section 4 presents the integration of data mining processes and their particular role in higher education issues and management, for the conception of an Academic Intelligence Management. Interrelated future research and plans are discussed as a conclusion in Section 5.data mining,data clustering, higher education, decision trees, C4.5 algorithm, k-means, decision support, academic intelligence management

    Deliverable 5.3 FutureTDM practitioner guidelines

    Get PDF

    Applying semantic web technologies to knowledge sharing in aerospace engineering

    Get PDF
    This paper details an integrated methodology to optimise Knowledge reuse and sharing, illustrated with a use case in the aeronautics domain. It uses Ontologies as a central modelling strategy for the Capture of Knowledge from legacy docu-ments via automated means, or directly in systems interfacing with Knowledge workers, via user-defined, web-based forms. The domain ontologies used for Knowledge Capture also guide the retrieval of the Knowledge extracted from the data using a Semantic Search System that provides support for multiple modalities during search. This approach has been applied and evaluated successfully within the aerospace domain, and is currently being extended for use in other domains on an increasingly large scale

    Order, Counter-order, Disorder : The Role of the IT Auditor in the Financial Statements Audit

    Get PDF
    This thesis investigates the role of an IT auditor within a financial statements audit engagement. As the company’s information system environment evolves in tandem with the emergence of disrupting technologies, financial auditors cannot adapt their audit to suit these ever-more complex environments. Financial auditors increasingly resort to the employment of IT auditors to certify the integrity and reliability of the financial information emitted by information systems. It thus becomes pertinent to study the role adopted by an IT auditor during these engagements and to explore the dynamics of a working relationship. Therefore, this thesis seeks to define the role, duties and responsibility to IT auditors working with Financial auditors. In addition, the place of the IT auditor within the team and within the audit was inspected. For that purpose, a mixed-method case study was conducted via participant observation in a Big Four Audit Firm wherein the researcher took the role of an IT auditor-in-training. A process mining analysis on the formalization of the Planning and Conclusion workpapers of the IT audit complemented the research. The analyses contribute to a clearer understanding of the role and duties of the IT auditor during a financial statements audit. In addition, they uncover and seek to explain the dynamics between IT and Financial auditors. An established hierarchical team structure was highlighted throughout the results of the process mining analysis. The main conclusion reached by this thesis established the IT auditor as subservient to the Financial auditors with complex team dynamics. Within itself, the role of the auditor is flexible and adjustable to the different audit engagements, but the comprehension of the IT environment of the client and the applicable controls, IT general and IT applications controls, are as mandatory as the presentation of the conclusions to the Financial auditors
    • …
    corecore