25,066 research outputs found

    Trust Evaluation for Embedded Systems Security research challenges identified from an incident network scenario

    Get PDF
    This paper is about trust establishment and trust evaluations techniques. A short background about trust, trusted computing and security in embedded systems is given. An analysis has been done of an incident network scenario with roaming users and a set of basic security needs has been identified. These needs have been used to derive security requirements for devices and systems, supporting the considered scenario. Using the requirements, a list of major security challenges for future research regarding trust establishment in dynamic networks have been collected and elaboration on some different approaches for future research has been done.This work was supported by the Knowledge foundation and RISE within the ARIES project

    Scheduling policies and system software architectures for mixed-criticality computing

    Get PDF
    Mixed-criticality model of computation is being increasingly adopted in timing-sensitive systems. The model not only ensures that the most critical tasks in a system never fails, but also aims for better systems resource utilization in normal condition. In this report, we describe the widely used mixed-criticality task model and fixed-priority scheduling algorithms for the model in uniprocessors. Because of the necessity by the mixed-criticality task model and scheduling policies, isolation, both temporal and spatial, among tasks is one of the main requirements from the system design point of view. Different virtualization techniques have been used to design system software architecture with the goal of isolation. We discuss such a few system software architectures which are being and can be used for mixed-criticality model of computation

    Software engineering (Encylopedia entry)

    Get PDF

    Flexible programmable networking: A reflective, component-based approach

    Get PDF
    The need for programmability and adaptability in networking systems is becoming increasingly important. More specifically, the challenge is in the ability to add services rapidly, and be able to deploy, configure and reconfigure them as easily as possible. Such demand is creating a considerable shift in the way networks are expected to operate in the future. This is the main aim of programmable networking research community, and in our project we are investigating a component-based approach to the structuring of programmable networking software. Our intention is to apply the notion of components, component frameworks and reflection ubiquitously, thus accommodating all the different elements that comprise a programmable networking system

    Integrating model checking with HiP-HOPS in model-based safety analysis

    Get PDF
    The ability to perform an effective and robust safety analysis on the design of modern safety–critical systems is crucial. Model-based safety analysis (MBSA) has been introduced in recent years to support the assessment of complex system design by focusing on the system model as the central artefact, and by automating the synthesis and analysis of failure-extended models. Model checking and failure logic synthesis and analysis (FLSA) are two prominent MBSA paradigms. Extensive research has placed emphasis on the development of these techniques, but discussion on their integration remains limited. In this paper, we propose a technique in which model checking and Hierarchically Performed Hazard Origin and Propagation Studies (HiP-HOPS) – an advanced FLSA technique – can be applied synergistically with benefit for the MBSA process. The application of the technique is illustrated through an example of a brake-by-wire system

    SOTER: A Runtime Assurance Framework for Programming Safe Robotics Systems

    Full text link
    The recent drive towards achieving greater autonomy and intelligence in robotics has led to high levels of complexity. Autonomous robots increasingly depend on third party off-the-shelf components and complex machine-learning techniques. This trend makes it challenging to provide strong design-time certification of correct operation. To address these challenges, we present SOTER, a robotics programming framework with two key components: (1) a programming language for implementing and testing high-level reactive robotics software and (2) an integrated runtime assurance (RTA) system that helps enable the use of uncertified components, while still providing safety guarantees. SOTER provides language primitives to declaratively construct a RTA module consisting of an advanced, high-performance controller (uncertified), a safe, lower-performance controller (certified), and the desired safety specification. The framework provides a formal guarantee that a well-formed RTA module always satisfies the safety specification, without completely sacrificing performance by using higher performance uncertified components whenever safe. SOTER allows the complex robotics software stack to be constructed as a composition of RTA modules, where each uncertified component is protected using a RTA module. To demonstrate the efficacy of our framework, we consider a real-world case-study of building a safe drone surveillance system. Our experiments both in simulation and on actual drones show that the SOTER-enabled RTA ensures the safety of the system, including when untrusted third-party components have bugs or deviate from the desired behavior

    Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS - a collection of Technical Notes Part 1

    Get PDF
    This report provides an introduction and overview of the Technical Topic Notes (TTNs) produced in the Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS (Tigars) project. These notes aim to support the development and evaluation of autonomous vehicles. Part 1 addresses: Assurance-overview and issues, Resilience and Safety Requirements, Open Systems Perspective and Formal Verification and Static Analysis of ML Systems. Part 2: Simulation and Dynamic Testing, Defence in Depth and Diversity, Security-Informed Safety Analysis, Standards and Guidelines
    • …
    corecore