2,140 research outputs found

    An Empirical Study on Android-related Vulnerabilities

    Full text link
    Mobile devices are used more and more in everyday life. They are our cameras, wallets, and keys. Basically, they embed most of our private information in our pocket. For this and other reasons, mobile devices, and in particular the software that runs on them, are considered first-class citizens in the software-vulnerabilities landscape. Several studies investigated the software-vulnerabilities phenomenon in the context of mobile apps and, more in general, mobile devices. Most of these studies focused on vulnerabilities that could affect mobile apps, while just few investigated vulnerabilities affecting the underlying platform on which mobile apps run: the Operating System (OS). Also, these studies have been run on a very limited set of vulnerabilities. In this paper we present the largest study at date investigating Android-related vulnerabilities, with a specific focus on the ones affecting the Android OS. In particular, we (i) define a detailed taxonomy of the types of Android-related vulnerability; (ii) investigate the layers and subsystems from the Android OS affected by vulnerabilities; and (iii) study the survivability of vulnerabilities (i.e., the number of days between the vulnerability introduction and its fixing). Our findings could help OS and apps developers in focusing their verification & validation activities, and researchers in building vulnerability detection tools tailored for the mobile world

    Security Code Smells in Android ICC

    Get PDF
    Android Inter-Component Communication (ICC) is complex, largely unconstrained, and hard for developers to understand. As a consequence, ICC is a common source of security vulnerability in Android apps. To promote secure programming practices, we have reviewed related research, and identified avoidable ICC vulnerabilities in Android-run devices and the security code smells that indicate their presence. We explain the vulnerabilities and their corresponding smells, and we discuss how they can be eliminated or mitigated during development. We present a lightweight static analysis tool on top of Android Lint that analyzes the code under development and provides just-in-time feedback within the IDE about the presence of such smells in the code. Moreover, with the help of this tool we study the prevalence of security code smells in more than 700 open-source apps, and manually inspect around 15% of the apps to assess the extent to which identifying such smells uncovers ICC security vulnerabilities.Comment: Accepted on 28 Nov 2018, Empirical Software Engineering Journal (EMSE), 201

    Ghera: A Repository of Android App Vulnerability Benchmarks

    Full text link
    Security of mobile apps affects the security of their users. This has fueled the development of techniques to automatically detect vulnerabilities in mobile apps and help developers secure their apps; specifically, in the context of Android platform due to openness and ubiquitousness of the platform. Despite a slew of research efforts in this space, there is no comprehensive repository of up-to-date and lean benchmarks that contain most of the known Android app vulnerabilities and, consequently, can be used to rigorously evaluate both existing and new vulnerability detection techniques and help developers learn about Android app vulnerabilities. In this paper, we describe Ghera, an open source repository of benchmarks that capture 25 known vulnerabilities in Android apps (as pairs of exploited/benign and exploiting/malicious apps). We also present desirable characteristics of vulnerability benchmarks and repositories that we uncovered while creating Ghera.Comment: 10 pages. Accepted at PROMISE'1

    Automatically Securing Permission-Based Software by Reducing the Attack Surface: An Application to Android

    Get PDF
    A common security architecture, called the permission-based security model (used e.g. in Android and Blackberry), entails intrinsic risks. For instance, applications can be granted more permissions than they actually need, what we call a "permission gap". Malware can leverage the unused permissions for achieving their malicious goals, for instance using code injection. In this paper, we present an approach to detecting permission gaps using static analysis. Our prototype implementation in the context of Android shows that the static analysis must take into account a significant amount of platform-specific knowledge. Using our tool on two datasets of Android applications, we found out that a non negligible part of applications suffers from permission gaps, i.e. does not use all the permissions they declare
    • …
    corecore