2,169 research outputs found

    A Declarative Framework for Specifying and Enforcing Purpose-aware Policies

    Full text link
    Purpose is crucial for privacy protection as it makes users confident that their personal data are processed as intended. Available proposals for the specification and enforcement of purpose-aware policies are unsatisfactory for their ambiguous semantics of purposes and/or lack of support to the run-time enforcement of policies. In this paper, we propose a declarative framework based on a first-order temporal logic that allows us to give a precise semantics to purpose-aware policies and to reuse algorithms for the design of a run-time monitor enforcing purpose-aware policies. We also show the complexity of the generation and use of the monitor which, to the best of our knowledge, is the first such a result in literature on purpose-aware policies.Comment: Extended version of the paper accepted at the 11th International Workshop on Security and Trust Management (STM 2015

    A System for Deduction-based Formal Verification of Workflow-oriented Software Models

    Full text link
    The work concerns formal verification of workflow-oriented software models using deductive approach. The formal correctness of a model's behaviour is considered. Manually building logical specifications, which are considered as a set of temporal logic formulas, seems to be the significant obstacle for an inexperienced user when applying the deductive approach. A system, and its architecture, for the deduction-based verification of workflow-oriented models is proposed. The process of inference is based on the semantic tableaux method which has some advantages when compared to traditional deduction strategies. The algorithm for an automatic generation of logical specifications is proposed. The generation procedure is based on the predefined workflow patterns for BPMN, which is a standard and dominant notation for the modeling of business processes. The main idea for the approach is to consider patterns, defined in terms of temporal logic,as a kind of (logical) primitives which enable the transformation of models to temporal logic formulas constituting a logical specification. Automation of the generation process is crucial for bridging the gap between intuitiveness of the deductive reasoning and the difficulty of its practical application in the case when logical specifications are built manually. This approach has gone some way towards supporting, hopefully enhancing our understanding of, the deduction-based formal verification of workflow-oriented models.Comment: International Journal of Applied Mathematics and Computer Scienc

    Knowledge-Intensive Processes: Characteristics, Requirements and Analysis of Contemporary Approaches

    Get PDF
    Engineering of knowledge-intensive processes (KiPs) is far from being mastered, since they are genuinely knowledge- and data-centric, and require substantial flexibility, at both design- and run-time. In this work, starting from a scientific literature analysis in the area of KiPs and from three real-world domains and application scenarios, we provide a precise characterization of KiPs. Furthermore, we devise some general requirements related to KiPs management and execution. Such requirements contribute to the definition of an evaluation framework to assess current system support for KiPs. To this end, we present a critical analysis on a number of existing process-oriented approaches by discussing their efficacy against the requirements

    Tea: A High-level Language and Runtime System for Automating Statistical Analysis

    Full text link
    Though statistical analyses are centered on research questions and hypotheses, current statistical analysis tools are not. Users must first translate their hypotheses into specific statistical tests and then perform API calls with functions and parameters. To do so accurately requires that users have statistical expertise. To lower this barrier to valid, replicable statistical analysis, we introduce Tea, a high-level declarative language and runtime system. In Tea, users express their study design, any parametric assumptions, and their hypotheses. Tea compiles these high-level specifications into a constraint satisfaction problem that determines the set of valid statistical tests, and then executes them to test the hypothesis. We evaluate Tea using a suite of statistical analyses drawn from popular tutorials. We show that Tea generally matches the choices of experts while automatically switching to non-parametric tests when parametric assumptions are not met. We simulate the effect of mistakes made by non-expert users and show that Tea automatically avoids both false negatives and false positives that could be produced by the application of incorrect statistical tests.Comment: 11 page

    The lifecycle of provenance metadata and its associated challenges and opportunities

    Full text link
    This chapter outlines some of the challenges and opportunities associated with adopting provenance principles and standards in a variety of disciplines, including data publication and reuse, and information sciences

    Conformance Checking Based on Multi-Perspective Declarative Process Models

    Full text link
    Process mining is a family of techniques that aim at analyzing business process execution data recorded in event logs. Conformance checking is a branch of this discipline embracing approaches for verifying whether the behavior of a process, as recorded in a log, is in line with some expected behaviors provided in the form of a process model. The majority of these approaches require the input process model to be procedural (e.g., a Petri net). However, in turbulent environments, characterized by high variability, the process behavior is less stable and predictable. In these environments, procedural process models are less suitable to describe a business process. Declarative specifications, working in an open world assumption, allow the modeler to express several possible execution paths as a compact set of constraints. Any process execution that does not contradict these constraints is allowed. One of the open challenges in the context of conformance checking with declarative models is the capability of supporting multi-perspective specifications. In this paper, we close this gap by providing a framework for conformance checking based on MP-Declare, a multi-perspective version of the declarative process modeling language Declare. The approach has been implemented in the process mining tool ProM and has been experimented in three real life case studies
    corecore