289 research outputs found

    Towards an efficient key management and authentication strategy for combined fog-to-cloud continuum systems

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Fog-to-cloud systems have emerged as a novel concept intended to improve service performance by considering fog and cloud resources in a coordinated way. In such a heterogeneous scenario, security provisioning becomes necessary, hence novel security solutions must be designed to handle the highly distributed fog-to-cloud nature. In the security area, key distribution and authentication are referred to as two critical pillars for a successful security deployment. Unfortunately, traditional centralized key distribution and authentication approaches do not meet the particularities brought by a Fog-tocloud system due to its distributed nature. In this paper, we propose a novel distributed key management and authentication (DKMA) strategy to make Fog-to-cloud systems as secure as possible. The paper ends up presenting some results assessing the benefits of the proposed strategy in terms of traffic and delay reduction.Peer ReviewedPostprint (published version

    A Novel and scalable naming strategy for IoT scenarios

    Get PDF
    Fog-to-Cloud (F2C) is a novel paradigm aimed at increasing the benefits brought by the growing Internet-of-Things (IoT) devices population at the edge of the network. F2C is intended to manage the available resources from the core to the edge of the network, allowing services to choose and use either a specific cloud or fog offer or a combination of both. Recognized the key benefits brought by F2C systems, such as low-latency for real-time services, location awareness services, mobility support and the possibility to process data close to where they are generated, research efforts are being made towards the creation of a widely accepted F2C architecture. However, in order to achieve the desired F2C control framework, many open challenges must be solved. In this paper, we address the identity management challenges and propose an Identity Management System (IDMS) that is based on the fragmentation of the network resource IDs.Postprint (author's final draft

    Resource identification in fog-to-cloud systems: toward an identity management strategy

    Get PDF
    og-to-Cloud (F2C) is a novel paradigm aiming at extending the cloud computing capabilities to the edge of the network through the hierarchical and coordinated management of both, centralized cloud datacenters and distributed fog resources. It will allow all kinds of devices that are capable to connect to the F2C network to share its idle resources and access both, service provider and third parties’ resources to expand its own capabilities. However, despite the numerous advantages offered by the F2C model, such as the possibility of offloading delay-sensitive tasks to a nearby device and using the cloud infrastructure in the execution of resource-intensive tasks, the list of open challenges that needs to be addressed to have a deployable F2C system is pretty long. In this paper we focus on the resource identification challenge, proposing an identity management system (IDMS) solution that starts assigning identifiers (IDs) to the devices in the F2C network in a decentralized fashion using hashes and afterwards, manages the usage of those IDs applying a fragmentation technique. The obtained results during the validation phase show that our proposal not only meets the desired IDMS characteristics, but also that the fragmentation strategy is aligned with the constrained nature of the devices in the lowest tier of the network hierarchy.Peer ReviewedPostprint (author's final draft

    Managing resources continuity from the edge to the cloud: Architecture and performance

    Get PDF
    The wide spread deployment of smart edge devices and applications that require real-time data processing, have with no doubt created the need to extend the reach of cloud computing to the edge, recently also referred to as Fog or Edge Computing. Fog computing implements the idea of extending the cloud where thePostprint (author's final draft
    • …
    corecore