345 research outputs found

    Data-driven methods for analyzing ballistocardiograms in longitudinal cardiovascular monitoring

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of death in the US; about 48% of American adults have one or more types of CVD. The importance of continuous monitoring of the older population, for early detection of changes in health conditions, has been shown in the literature, as the key to a successful clinical intervention. We have been investigating environmentally-embedded in-home networks of non-invasive sensing modalities. This dissertation concentrates on the signal processing techniques required for the robust extraction of morphological features from the ballistocardiographs (BCG), and machine learning approaches to utilize these features in non-invasive monitoring of cardiovascular conditions. At first, enhancements in the time domain detection of the cardiac cycle are addressed due to its importance in the estimation of heart rate variability (HRV) and sleep stages. The proposed enhancements in the energy-based algorithm for BCG beat detection have shown at least 50% improvement in the root mean square error (RMSE) of the beat to beat heart rate estimations compared to the reference estimations from the electrocardiogram (ECG) R to R intervals. These results are still subject to some errors, primarily due to the contamination of noise and motion artifacts caused by floor vibration, unconstrained subject movements, or even the respiratory activities. Aging, diseases, breathing, and sleep disorders can also affect the quality of estimation as they slightly modify the morphology of the BCG waveform.Includes bibliographical reference

    Smart workplaces: a system proposal for stress management

    Get PDF
    Over the past last decades of contemporary society, workplaces have become the primary source of many health issues, leading to mental problems such as stress, depression, and anxiety. Among the others, environmental aspects have shown to be the causes of stress, illness, and lack of productivity. With the arrival of new technologies, especially in the smart workplaces field, most studies have focused on investigating the building energy efficiency models and human thermal comfort. However, little has been applied to occupants’ stress recognition and well-being overall. Due to this fact, this present study aims to propose a stress management solution for an interactive design system that allows the adapting of comfortable environmental conditions according to the user preferences by measuring in real-time the environmental and biological characteristics, thereby helping to prevent stress, as well as to enable users to cope stress when being stressed. The secondary objective will focus on evaluating one part of the system: the mobile application. The proposed system uses several usability methods to identify users’ needs, behavior, and expectations from the user-centered design approach. Applied methods, such as User Research, Card Sorting, and Expert Review, allowed us to evaluate the design system according to Heuristics Analysis, resulting in improved usability of interfaces and experience. The study presents the research results, the design interface, and usability tests. According to the User Research results, temperature and noise are the most common environmental stressors among the users causing stress and uncomfortable conditions to work in, and the preference for physical activities over the digital solutions for coping with stress. Additionally, the System Usability Scale (SUS) results identified that the system’s usability was measured as “excellent” and “acceptable” with a final score of 88 points out of the 100. It is expected that these conclusions can contribute to future investigations in the smart workplaces study field and their interaction with the people placed there.Nas últimas décadas da sociedade contemporânea, o local de trabalho tem se tornado principal fonte de muitos problemas de saúde mental, como o stress, depressão e ansiedade. Os aspetos ambientais têm se revelado como as causas de stress, doenças, falta de produtividade, entre outros. Atualmente, com a chegada de novas tecnologias, principalmente na área de locais de trabalho inteligentes, a maioria dos estudos tem se concentrado na investigação de modelos de eficiência energética de edifícios e conforto térmico humano. No entanto, pouco foi aplicado ao reconhecimento do stress dos ocupantes e ao bem-estar geral das pessoas. Diante disso, o objetivo principal é propor um sistema de design de gestão do stress para um sistema de design interativo que permita adaptar as condições ambientais de acordo com as preferências de utilizador, medindo em tempo real as características ambientais e biológicas, auxiliando assim na prevenção de stress, bem como ajuda os utilizadores a lidar com o stress quando estão sob o mesmo. O segundo objetivo é desenhar e avaliar uma parte do projeto — o protótipo da aplicação móvel através da realização de testes de usabilidade. O sistema proposto resulta da abordagem de design centrado no utilizador, utilizando diversos métodos de usabilidade para identificar as necessidades, comportamentos e as expectativas dos utilizadores. Métodos aplicados, como Pesquisa de Usuário, Card Sorting e Revisão de Especialistas, permitiram avaliar o sistema de design de acordo com a análise heurística, resultando numa melhoria na usabilidade das interfaces e experiência. O estudo apresenta os resultados da pesquisa, a interface do design e os testes de usabilidade. De acordo com os resultados de User Research, a temperatura e o ruído são os stressores ambientais mais comuns entre os utilizadores, causando stresse e condições menos favoráveis para trabalhar, igualmente existe uma preferência por atividades físicas sobre as soluções digitais na gestão do stresse. Adicionalmente, os resultados de System Usability Scale (SUS) identificaram a usabilidade do sistema de design como “excelente” e “aceitável” com pontuação final de 88 pontos em 100. É esperado que essas conclusões possam contribuir para futuras investigações no campo de estudo dos smart workplaces e sua interação com os utilizadores

    Complex Assessment of Pilot Fatigue in Terms of Physiological Parameters

    Get PDF
    Únava pilotů je jedním z hlavních důvodů leteckých nehod, ke kterým došlo v důsledku pochybení lidského činitele. Z tohoto důvodu je v zájmu zachování nejvyšších standardů letové bezpečnosti ve všech fázích letu zásadní být schopen zabránit vzniku únavy nebo alespoň být schopen ji účinně detekovat a následně na tuto skutečnost upozornit posádku, aby byla schopna unaveného člena posádky odstavit. V současnosti existují studie zabývající se detekcí a sledováním únavy pilotů prostřednictvím fyziologických parametrů, jako je srdeční aktivita, pohyby očí, aktivita horních končetin apod. Ze všech dostupných fyziologických měření se pak analýza variability srdečního rytmu (HRV) jeví jako nejvhodnější metoda zkoumání únavy pilota. Ačkoli se k hodnocení únavy používá mnoho parametrů vycházejících z analýzy variability srdečního rytmu, v literatuře neexistuje shoda o tom, které z těchto parametrů variability srdeční frekvence jsou nejdůležitější pro použití při detekci únavy piloty. Na základě tohoto nedostatku informací v kontextu současného stavu poznání je cílem této práce zjistit nejvýznamnější parametry analýzy variability srdečního rytmu, které lze přímo použít při monitorování únavy pilota. Pro účely zisku dat byly provedeny 24hodinové experimenty, při nichž byla sbírána data o srdeční aktivitě 16 subjektů na Ústavu letecké dopravy, Fakulty dopravní, Českého vysokého učení technického v Praze. Údaje o srdeční aktivitě subjektu byly zaznamenány ve formě elektrokardiogramu (EKG), zatímco plnily letové úkoly. První část této práce přináší teoretické základy únavy v prostředí kokpitu a vysvětluje několik metod, které se používají pro analýzu variability srdeční frekvence zaznamenaných signálů EKG. Následující části obsahují metody statistické analýzy používané k zjištění parametrů s nejvyšší importancí. Výsledky naznačují, že parametr pVLF analýzy ve frekvenční a časově-frekvenční doméně a parametr nHF analýzy HRV ve frekvenční doméně jsou parametry s nejvyšší importancí v případě indikace únavy člena letové posádky. Klíčová slova: Únava pilota, fyziologické parametry, srdeční aktivita, variabilita srdečního rytmuPilot fatigue is one of the main reasons of aircraft accidents that were caused due to the human error factors in flight crew. Therefore, in order to maintain the highest standards of flight safety throughout all flight phases, it is crucially important to be able to prevent occurrence of fatigue or at least to be able to efficiently detect it, afterwards alert the crew to eliminate the fatigued member from flying. At present, there are many studies focusing on detection and monitoring of pilot fatigue by tracking pilot’s physiological parameters such as: cardiac activity, eye movements, upper-limb activities etc. Among all those physiological measurements available, heart rate variability analysis seems to be the most accurate method to examine pilot fatigue. Although many indices of heart rate variability analysis are used to evaluate fatigue, there is no consensus in the literature on which of those heart rate variability indices are the most important ones to utilize on determination of pilot fatigue. Based on this lack of information on the current state of the art, the purpose of this thesis is to ascertain the most significant parameters of heart rate variability analysis that can be directly used in determining pilot fatigue. For obtaining data, a 24-hours of cardiac activity measurements were conducted on 16 subjects on a flight simulator located at the Department of Air Transport, Faculty of Transportation Sciences, Czech Technical University in Prague. The subject’s cardiac activity data were recorded in form of electrocardiogram (ECG) while they performed flying tasks. The first part of this thesis delivers a theoretical background on fatigue in the cockpit environment and explains several methods that are used for heart rate variability analysis of the recorded ECG signals. The following parts provide the statistical analysis methods used to find out the most important parameters. The results indicate that pVLF index of the frequency domain and time-frequency domain analysis and nHF parameter of frequency-domain analysis of HRV corresponds to the most important indices which indicate fatigued condition of a flight crew member. Keywords: Pilot fatigue, physiological parameters, cardiac activity, heart rate variabilit

    Emotions in context: examining pervasive affective sensing systems, applications, and analyses

    Get PDF
    Pervasive sensing has opened up new opportunities for measuring our feelings and understanding our behavior by monitoring our affective states while mobile. This review paper surveys pervasive affect sensing by examining and considering three major elements of affective pervasive systems, namely; “sensing”, “analysis”, and “application”. Sensing investigates the different sensing modalities that are used in existing real-time affective applications, Analysis explores different approaches to emotion recognition and visualization based on different types of collected data, and Application investigates different leading areas of affective applications. For each of the three aspects, the paper includes an extensive survey of the literature and finally outlines some of challenges and future research opportunities of affective sensing in the context of pervasive computing

    Wearable and Nearable Biosensors and Systems for Healthcare

    Get PDF
    Biosensors and systems in the form of wearables and “nearables” (i.e., everyday sensorized objects with transmitting capabilities such as smartphones) are rapidly evolving for use in healthcare. Unlike conventional approaches, these technologies can enable seamless or on-demand physiological monitoring, anytime and anywhere. Such monitoring can help transform healthcare from the current reactive, one-size-fits-all, hospital-centered approach into a future proactive, personalized, decentralized structure. Wearable and nearable biosensors and systems have been made possible through integrated innovations in sensor design, electronics, data transmission, power management, and signal processing. Although much progress has been made in this field, many open challenges for the scientific community remain, especially for those applications requiring high accuracy. This book contains the 12 papers that constituted a recent Special Issue of Sensors sharing the same title. The aim of the initiative was to provide a collection of state-of-the-art investigations on wearables and nearables, in order to stimulate technological advances and the use of the technology to benefit healthcare. The topics covered by the book offer both depth and breadth pertaining to wearable and nearable technology. They include new biosensors and data transmission techniques, studies on accelerometers, signal processing, and cardiovascular monitoring, clinical applications, and validation of commercial devices

    Applications of aerospace technology in the public sector

    Get PDF
    Current activities of the program to accelerate specific applications of space related technology in major public sector problem areas are summarized for the period 1 June 1971 through 30 November 1971. An overview of NASA technology, technology applications, and supporting activities are presented. Specific technology applications in biomedicine are reported including cancer detection, treatment and research; cardiovascular diseases, diagnosis, and treatment; medical instrumentation; kidney function disorders, treatment, and research; and rehabilitation medicine

    Biosignal controlled recommendation in entertainment systems

    Get PDF
    With the explosive growth of the entertainment contents and the ubiquitous access of them via fixed or mobile computing devices, recommendation systems become essential tools to help the user to find the right entertainment at the right time and location. I envision that by integrating the bio signal input into the recommendation process, it will help the users not only to find interesting contents, but also to increase one’s comfort level by taking into account the biosginal feedback from the users. The goal of this project was to develop a biosignal controlled entertainment recommendation system that increases the user’s comfort level by reducing the level of stress. As the starting point, this project aims to contribute to the field of recommendation systems with two points. The first is the mechanism of embedding the biosignal non-intrusively into the recommendation process. The second is the strategy of the biosignal controlled recommendation to reduce stress. Heart rate controlled in-flight music recommendation is chosen as its application domain. The hypothesis of this application is that, the passenger's heart rate deviates from the normal due to unusual long haul flight cabin environment. By properly designing a music recommendation system to recommend heart rate controlled personalized music playlists to the passenger, the passengers' heart rate can be uplifted, down-lifted back to normal or kept within normal, thus their stress can be reduced. Four research questions have been formulated based on this hypothesis. After the literature study, the project went mainly through three phases: framework design, system implementation and user evaluation to answer these research questions. During the framework design phase, the heart rate was firstly modeled as the states of bradycardia, normal and tachycardia. The objective of the framework is that, if the user's heart rate is higher or lower than the normal heart rate, the system recommends a personalized music playlist accordingly to transfer the user’s heart rate back to normal, otherwise to keep it at normal. The adaptive framework integrates the concepts of context adaptive systems, user profiling, and the methods of using music to adjust the heart rate in a feedback control system. In the feedback loop, the playlists were composed using a Markov decision process. Yet, the framework allows the user to reject the recommendations and to manually select the favorite music items. During this process, the system logs the interactions between the user and the system for later learning the user’s latest music preferences. The designed framework was then implemented with platform independent software architecture. The architecture has five abstraction levels. The lowest resource level contains the music source, the heart rate sensors and the user profile information. The second layer is for resource management. In this layer are the manager components to manage the resources from the first layer and to modulate the access from upper layers to these resources. The third layer is the database, acting as a data repository. The fourth layer is for the adaptive control, which includes the user feedback log, the inference engine and the preference learning component. The top layer is the user interface. In this architecture, the layers and the components in the layers are loosely coupled, which ensures the flexibility. The implemented system was used in the user experiments to validate the hypothesis. The experiments simulated the long haul flights from Amsterdam to Shanghai with the same time schedule as the KLM flights. Twelve subjects were invited to participate in the experiments. Six were allocated to the controlled group and others were allocated to the treatment group. In addition to a normal entertainment system for the control group, the treatment group was also provided with the heart rate controlled music recommendation system. The experiments results validated the hypothesis and answered the research questions. The passenger's heart rate deviates from normal. In our user experiments, the passenger's heart rate was in the bradycardia state 24.6% of time and was in the tachycardia state 7.3% of time. The recommended uplifting music reduces the average bradycardia state duration from 14.78 seconds in the control group to 6.86 seconds in the treatment group. The recommended keeping music increases the average normal state duration from 24.66 seconds in the control group to 29.79 seconds in the treatment group. The recommended down-lifting music reduces the average tachycardia state duration from 13.89 seconds in the control group to 6.53 seconds in the treatment group. Compared to the control group, the stress of the treatment group has been reduced significantly

    Technology applications

    Get PDF
    A summary of NASA Technology Utilization programs for the period of 1 December 1971 through 31 May 1972 is presented. An abbreviated description of the overall Technology Utilization Applications Program is provided as a background for the specific applications examples. Subjects discussed are in the broad headings of: (1) cancer, (2) cardiovascular disease, (2) medical instrumentation, (4) urinary system disorders, (5) rehabilitation medicine, (6) air and water pollution, (7) housing and urban construction, (8) fire safety, (9) law enforcement and criminalistics, (10) transportation, and (11) mine safety

    Sensing and Signal Processing in Smart Healthcare

    Get PDF
    In the last decade, we have witnessed the rapid development of electronic technologies that are transforming our daily lives. Such technologies are often integrated with various sensors that facilitate the collection of human motion and physiological data and are equipped with wireless communication modules such as Bluetooth, radio frequency identification, and near-field communication. In smart healthcare applications, designing ergonomic and intuitive human–computer interfaces is crucial because a system that is not easy to use will create a huge obstacle to adoption and may significantly reduce the efficacy of the solution. Signal and data processing is another important consideration in smart healthcare applications because it must ensure high accuracy with a high level of confidence in order for the applications to be useful for clinicians in making diagnosis and treatment decisions. This Special Issue is a collection of 10 articles selected from a total of 26 contributions. These contributions span the areas of signal processing and smart healthcare systems mostly contributed by authors from Europe, including Italy, Spain, France, Portugal, Romania, Sweden, and Netherlands. Authors from China, Korea, Taiwan, Indonesia, and Ecuador are also included
    corecore