28 research outputs found

    Parallelizing Description Logic Reasoning

    Get PDF
    Description Logic has become one of the primary knowledge representation and reasoning methodologies during the last twenty years. A lot of areas are benefiting from description logic based technologies. Description logic reasoning algorithms and a number of optimization techniques for them play an important role and have been intensively researched. However, few of them have been systematically investigated in a concurrency context in spite of multi-processor computing facilities growing up. Meanwhile, semantic web, an application domain of description logic, is producing vast knowledge data on the Internet, which needs to be dealt with by using scalable solutions. This situation requires description logic reasoners to be endowed with reasoning scalability. This research introduced concurrent computing in two aspects: classification, and tableau-based description logic reasoning. Classification is a core description logic reasoning service. Over more than two decades many research efforts have been devoted to optimizing classification. Those classification optimization algorithms have shown their pragmatic effectiveness for sequential processing. However, as concurrent computing becomes widely available, new classification algorithms that are well suited to parallelization need to be developed. This need is further supported by the observation that most available OWL reasoners, which are usually based on tableau reasoning, can only utilize a single processor. Such an inadequacy often leads users working in ontology development to frustration, especially if their ontologies are complex and require long processing times. Classification service finds out all named concept subsumption relationships entailed in a knowledge base. Each subsumption test enrolls two concepts and is independent of the others. At most n^2 subsumption tests are needed for a knowledge base which contains n concepts. As the first contribution of this research, we developed an algorithm and a corresponding architecture showing that reasoning scalability can be gained by using concurrent computing. Further, this research investigated how concurrent computing can increase performance of tableau-based description logic reasoning algorithms. Tableau-based description logic reasoning decides a problem by constructing an AND-OR tree. Before this research, some research has shown the effectiveness of parallelizing processing disjunction branches of a tableau expansion tree. Our research has shown how reasoning scalability can be gained by processing conjunction branches of a tableau expansion tree. In addition, this research developed an algorithm, merge classification, that uses a divide and conquer strategy for parallelizing classification. This method applies concurrent computing to the more efficient classification algorithm, top-search & bottom-search, which has been adopted as a standard procedure for classification. Reasoning scalability can be observed in a number of real world cases by using this algorithm

    Web ontology reasoning with logic databases [online]

    Get PDF

    Decentralized case-based reasoning and Semantic Web technologies applied to decision support in oncology

    Get PDF
    International audienceThis article presents the Kasimir system dedicated to decision knowledge management in oncology and which is built on top of Semantic Web technologies, taking benefit from standard knowledge representation formalisms and open reasoning tools. The representation of medical decision protocols, in particular for breast cancer treatment, is based on concepts and instances implemented within the description logic OWL DL. The knowledge units related to a protocol can then be applied for solving specific medical problems, using instance or concept classification. However, the straight application of a protocol is not always satisfactory, e.g., because of contraindications, necessitating an adaptation of the protocol. This is why the principles and methods of case-based reasoning in the framework of description logics have been used. In addition, the domain of oncology is complex and involves several specialties, e.g. surgery and chemotherapy. This complexity can be better undertaken with a viewpoint-based representation of protocols and viewpoint-based reasoning, for either application or adaptation of the protocols. Accordingly, a distributed description logic has been used for representing a viewpoint-based protocol. The application and the adaptation of the viewpoint-based protocol to medical cases is carried out using global instance classification and decentralized case-based reasoning

    Semantic Web Enabled Software Engineering

    Get PDF
    Ontologies allow the capture and sharing of domain knowledge by formalizing information and making it machine understandable. As part of an information system, ontologies can capture and carry the reasoning knowledge needed to fulfill different application goals. Although many ontologies have been developed over recent years, few include such reasoning information. As a result, many ontologies are not used in real-life applications, do not get reused or only act as a taxonomy of a domain. This work is an investigation into the practical use of ontologies as a driving factor in the development of applications and the incorporation of Knowledge Engineering as a meaningful activity into modern agile software development. This thesis contributes a novel methodology that supports an incremental requirement analysis and an iterative formalization of ontology design through the use of ontology reasoning patterns. It also provides an application model for ontology-driven applications that can deal with nonontological data sources. A set of case studies with various application specific goals helps to elucidate whether ontologies are in fact suitable for more than simple knowledge formalization and sharing, and can act as the underlying structure for developing largescale information systems. Tasks from the area of bug-tracker quality mining and clone detection are evaluated for this purpose

    Semantic Management of Location-Based Services in Wireless Environments

    Get PDF
    En los últimos años el interés por la computación móvil ha crecido debido al incesante uso de dispositivos móviles (por ejemplo, smartphones y tablets) y su ubicuidad. El bajo coste de dichos dispositivos unido al gran número de sensores y mecanismos de comunicación que equipan, hace posible el desarrollo de sistemas de información útiles para sus usuarios. Utilizando un cierto tipo especial de sensores, los mecanismos de posicionamiento, es posible desarrollar Servicios Basados en la Localización (Location-Based Services o LBS en inglés) que ofrecen un valor añadido al considerar la localización de los usuarios de dispositivos móviles para ofrecerles información personalizada. Por ejemplo, se han presentado numerosos LBS entre los que se encuentran servicios para encontrar taxis, detectar amigos en las cercanías, ayudar a la extinción de incendios, obtener fotos e información de los alrededores, etc. Sin embargo, los LBS actuales están diseñados para escenarios y objetivos específicos y, por lo tanto, están basados en esquemas predefinidos para el modelado de los elementos involucrados en estos escenarios. Además, el conocimiento del contexto que manejan es implícito; razón por la cual solamente funcionan para un objetivo específico. Por ejemplo, en la actualidad un usuario que llega a una ciudad tiene que conocer (y comprender) qué LBS podrían darle información acerca de medios de transporte específicos en dicha ciudad y estos servicios no son generalmente reutilizables en otras ciudades. Se han propuesto en la literatura algunas soluciones ad hoc para ofrecer LBS a usuarios pero no existe una solución general y flexible que pueda ser aplicada a muchos escenarios diferentes. Desarrollar tal sistema general simplemente uniendo LBS existentes no es sencillo ya que es un desafío diseñar un framework común que permita manejar conocimiento obtenido de datos enviados por objetos heterogéneos (incluyendo datos textuales, multimedia, sensoriales, etc.) y considerar situaciones en las que el sistema tiene que adaptarse a contextos donde el conocimiento cambia dinámicamente y en los que los dispositivos pueden usar diferentes tecnologías de comunicación (red fija, inalámbrica, etc.). Nuestra propuesta en la presente tesis es el sistema SHERLOCK (System for Heterogeneous mobilE Requests by Leveraging Ontological and Contextual Knowledge) que presenta una arquitectura general y flexible para ofrecer a los usuarios LBS que puedan serles interesantes. SHERLOCK se basa en tecnologías semánticas y de agentes: 1) utiliza ontologías para modelar la información de usuarios, dispositivos, servicios, y el entorno, y un razonador para manejar estas ontologías e inferir conocimiento que no ha sido explicitado; 2) utiliza una arquitectura basada en agentes (tanto estáticos como móviles) que permite a los distintos dispositivos SHERLOCK intercambiar conocimiento y así mantener sus ontologías locales actualizadas, y procesar peticiones de información de sus usuarios encontrando lo que necesitan, allá donde esté. El uso de estas dos tecnologías permite a SHERLOCK ser flexible en términos de los servicios que ofrece al usuario (que son aprendidos mediante la interacción entre los dispositivos), y de los mecanismos para encontrar la información que el usuario quiere (que se adaptan a la infraestructura de comunicación subyacente)

    Semantic Keyword-based Search on Heterogeneous Information Systems

    Get PDF
    En los últimos años, con la difusión y el uso de Internet, el volumen de información disponible para los usuarios ha crecido exponencialmente. Además, la posibilidad de acceder a dicha información se ha visto impulsada por los niveles de conectividad de los que disfrutamos actualmente gracias al uso de los móviles de nueva generación y las redes inalámbricas (e.g., 3G, Wi-Fi). Sin embargo, con los métodos de acceso actuales, este exceso de información es tan perjudicial como la falta de la misma, ya que el usuario no tiene tiempo de procesarla en su totalidad. Por otro lado, esta información está detrás de sistemas de información de naturaleza muy heterogénea (e.g., buscadores Web, fuentes de Linked Data, etc.), y el usuario tiene que conocerlos para poder explotar al máximo sus capacidades. Esta diversidad se hace más patente si consideramos cualquier servicio de información como potencial fuente de información para el usuario (e.g., servicios basados en la localización, bases de datos exportadas mediante Servicios Web, etc.). Dado este nivel de heterogeneidad, la integración de estos sistemas se debe hacer externamente, ocultando su complejidad al usuario y dotándole de mecanismos para que pueda expresar sus consultas de forma sencilla. En este sentido, el uso de interfaces basados en palabras clave (keywords) se ha popularizado gracias a su sencillez y a su adopción por parte de los buscadores Web más usados. Sin embargo, esa sencillez que es su mayor virtud también es su mayor defecto, ya que genera problemas de ambigüedad en las consultas. Las consultas expresadas como conjuntos de palabras clave son inherentemente ambiguas al ser una proyección de la verdadera pregunta que el usuario quiere hacer. En la presente tesis, abordamos el problema de integrar sistemas de información heterogéneos bajo una búsqueda guiada por la semántica de las palabras clave; y presentamos QueryGen, un prototipo de nuestra solución. En esta búsqueda semántica abogamos por establecer la consulta que el usuario tenía en mente cuando escribió sus palabras clave, en un lenguaje de consulta formal para evitar posibles ambigüedades. La integración de los sistemas subyacentes se realiza a través de la definición de sus lenguajes de consulta y de sus modelos de ejecución. En particular, nuestro sistema: - Descubre el significado de las palabras clave consultando un conjunto dinámico de ontologías, y desambigua dichas palabras teniendo en cuenta su contexto (el resto de palabras clave), ya que cada una de las palabras tiene influencia sobre el significado del resto de la entrada. Durante este proceso, los significados que son suficientemente similares son fusionados y el sistema propone aquellos más probables dada la entrada del usuario. La información semántica obtenida en el proceso es integrada y utilizada en fases posteriores para obtener la correcta interpretación del conjunto de palabras clave. - Un mismo conjunto de palabras pueden representar diversas consultas aún cuando se conoce su significado individual. Por ello, una vez establecidos los significados de cada palabra y para obtener la consulta exacta del usuario, nuestro sistema encuentra todas las preguntas posibles utilizando las palabras clave. Esta traducción de palabras clave a preguntas se realiza empleando lenguajes de consulta formales para evitar las posibles ambigüedades y expresar la consulta de manera precisa. Nuestro sistema evita la generación de preguntas semánticamente incorrectas o duplicadas con la ayuda de un razonador basado en Lógicas Descriptivas (Description Logics). En este proceso, nuestro sistema es capaz de reaccionar ante entradas insuficientes (e.g., palabras omitidas) mediante la adición de términos virtuales, que representan internamente palabras que el usuario tenía en mente pero omitió cuando escribió su consulta. - Por último, tras la validación por parte del usuario de su consulta, nuestro sistema accede a los sistemas de información registrados que pueden responderla y recupera la respuesta de acuerdo a la semántica de la consulta. Para ello, nuestro sistema implementa una arquitectura modular permite añadir nuevos sistemas al vuelo siempre que se proporcione su especificación (lenguajes de consulta soportados, modelos y formatos de datos, etc.). Por otro lado, el trabajar con sistemas de información heterogéneos, en particular sistemas relacionados con la Computación Móvil, ha permitido que las contribuciones de esta tesis no se limiten al campo de la búsqueda semántica. A este respecto, se ha estudiado el ámbito de la semántica de las consultas basadas en la localización, y especialmente, la influencia de la semántica de las localizaciones en el procesado e interpretación de las mismas. En particular, se proponen dos modelos ontológicos para modelar y capturar la relaciones semánticas de las localizaciones y ampliar la expresividad de las consultas basadas en la localización. Durante el desarrollo de esta tesis, situada entre el ámbito de la Web Semántica y el de la Computación Móvil, se ha abierto una nueva línea de investigación acerca del modelado de conocimiento volátil, y se ha estudiado la posibilidad de utilizar razonadores basados en Lógicas Descriptivas en dispositivos basados en Android. Por último, nuestro trabajo en el ámbito de las búsquedas semánticas a partir de palabras clave ha sido extendido al ámbito de los agentes conversacionales, haciéndoles capaces de explotar distintas fuentes de datos semánticos actualmente disponibles bajo los principios del Linked Data

    Big Data Computing for Geospatial Applications

    Get PDF
    The convergence of big data and geospatial computing has brought forth challenges and opportunities to Geographic Information Science with regard to geospatial data management, processing, analysis, modeling, and visualization. This book highlights recent advancements in integrating new computing approaches, spatial methods, and data management strategies to tackle geospatial big data challenges and meanwhile demonstrates opportunities for using big data for geospatial applications. Crucial to the advancements highlighted in this book is the integration of computational thinking and spatial thinking and the transformation of abstract ideas and models to concrete data structures and algorithms

    Pseudo-contractions as Gentle Repairs

    Get PDF
    Updating a knowledge base to remove an unwanted consequence is a challenging task. Some of the original sentences must be either deleted or weakened in such a way that the sentence to be removed is no longer entailed by the resulting set. On the other hand, it is desirable that the existing knowledge be preserved as much as possible, minimising the loss of information. Several approaches to this problem can be found in the literature. In particular, when the knowledge is represented by an ontology, two different families of frameworks have been developed in the literature in the past decades with numerous ideas in common but with little interaction between the communities: applications of AGM-like Belief Change and justification-based Ontology Repair. In this paper, we investigate the relationship between pseudo-contraction operations and gentle repairs. Both aim to avoid the complete deletion of sentences when replacing them with weaker versions is enough to prevent the entailment of the unwanted formula. We show the correspondence between concepts on both sides and investigate under which conditions they are equivalent. Furthermore, we propose a unified notation for the two approaches, which might contribute to the integration of the two areas
    corecore