2,880 research outputs found

    Space robotics: Recent accomplishments and opportunities for future research

    Get PDF
    The Langley Guidance, Navigation, and Control Technical Committee (GNCTC) was one of six technical committees created in 1991 by the Chief Scientist, Dr. Michael F. Card. During the kickoff meeting Dr. Card charged the chairmen to: (1) establish a cross-Center committee; (2) support at least one workshop in a selected discipline; and (3) prepare a technical paper on recent accomplishments in the discipline and on opportunities for future research. The Guidance, Navigation, and Control Committee was formed and selected for focus on the discipline of Space robotics. This report is a summary of the committee's assessment of recent accomplishments and opportunities for future research. The report is organized as follows. First is an overview of the data sources used by the committee. Next is a description of technical needs identified by the committee followed by recent accomplishments. Opportunities for future research ends the main body of the report. It includes the primary recommendation of the committee that NASA establish a national space facility for the development of space automation and robotics, one element of which is a telerobotic research platform in space. References 1 and 2 are the proceedings of two workshops sponsored by the committee during its June 1991, through May 1992 term. The focus of the committee for the June 1992 - May 1993 term will be to further define to the recommended platform in space and to add an additional discipline which includes aircraft related GN&C issues. To the latter end members performing aircraft related research will be added to the committee. (A preliminary assessment of future opportunities in aircraft-related GN&C research has been included as appendix A.

    CRAVES: Controlling Robotic Arm with a Vision-based Economic System

    Full text link
    Training a robotic arm to accomplish real-world tasks has been attracting increasing attention in both academia and industry. This work discusses the role of computer vision algorithms in this field. We focus on low-cost arms on which no sensors are equipped and thus all decisions are made upon visual recognition, e.g., real-time 3D pose estimation. This requires annotating a lot of training data, which is not only time-consuming but also laborious. In this paper, we present an alternative solution, which uses a 3D model to create a large number of synthetic data, trains a vision model in this virtual domain, and applies it to real-world images after domain adaptation. To this end, we design a semi-supervised approach, which fully leverages the geometric constraints among keypoints. We apply an iterative algorithm for optimization. Without any annotations on real images, our algorithm generalizes well and produces satisfying results on 3D pose estimation, which is evaluated on two real-world datasets. We also construct a vision-based control system for task accomplishment, for which we train a reinforcement learning agent in a virtual environment and apply it to the real-world. Moreover, our approach, with merely a 3D model being required, has the potential to generalize to other types of multi-rigid-body dynamic systems.Comment: 10 pages, 6 figure

    SAFER: Search and Find Emergency Rover

    Get PDF
    When disaster strikes and causes a structure to collapse, it poses a unique challenge to search and rescue teams as they assess the situation and search for survivors. Currently there are very few tools that can be used by these teams to aid them in gathering important information about the situation that allow members to stay at a safe distance. SAFER, Search and Find Emergency Rover, is an unmanned, remotely operated vehicle that can provide early reconnaissance to search and rescue teams so they may have more information to prepare themselves for the dangers that lay inside the wreckage. Over the past year, this team has restored a bare, non-operational chassis inherited from Roverwerx 2012 into a rugged and operational rover with increased functionality and reliability. SAFER uses a 360-degree camera to deliver real time visual reconnaissance to the operator who can remain safely stationed on the outskirts of the disaster. With strong drive motors providing enough torque to traverse steep obstacles and enough power to travel at up to 3 ft/s, SAFER can cover ground quickly and effectively over its 1-3 hour battery life, maximizing reconnaissance for the team. Additionally, SAFER contains 3 flashing beacons that can be dropped by the operator in the event a victim is found so that when team members do enter the scene they may easily locate victims. In the future, other teams may wish to improve upon this iteration by adding thermal imaging, air quality sensors, and potentially a robotic arm with a camera that can see in spaces too small for the entire rover to enter

    Human-like arm motion generation: a review

    Get PDF
    In the last decade, the objectives outlined by the needs of personal robotics have led to the rise of new biologically-inspired techniques for arm motion planning. This paper presents a literature review of the most recent research on the generation of human-like arm movements in humanoid and manipulation robotic systems. Search methods and inclusion criteria are described. The studies are analyzed taking into consideration the sources of publication, the experimental settings, the type of movements, the technical approach, and the human motor principles that have been used to inspire and assess human-likeness. Results show that there is a strong focus on the generation of single-arm reaching movements and biomimetic-based methods. However, there has been poor attention to manipulation, obstacle-avoidance mechanisms, and dual-arm motion generation. For these reasons, human-like arm motion generation may not fully respect human behavioral and neurological key features and may result restricted to specific tasks of human-robot interaction. Limitations and challenges are discussed to provide meaningful directions for future investigations.FCT Project UID/MAT/00013/2013FCT–Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020

    Autonomous Systems, Robotics, and Computing Systems Capability Roadmap: NRC Dialogue

    Get PDF
    Contents include the following: Introduction. Process, Mission Drivers, Deliverables, and Interfaces. Autonomy. Crew-Centered and Remote Operations. Integrated Systems Health Management. Autonomous Vehicle Control. Autonomous Process Control. Robotics. Robotics for Solar System Exploration. Robotics for Lunar and Planetary Habitation. Robotics for In-Space Operations. Computing Systems. Conclusion

    Vision-Based Autonomous Control in Robotic Surgery

    Get PDF
    Robotic Surgery has completely changed surgical procedures. Enhanced dexterity, ergonomics, motion scaling, and tremor filtering, are well-known advantages introduced with respect to classical laparoscopy. In the past decade, robotic plays a fundamental role in Minimally Invasive Surgery (MIS) in which the da Vinci robotic system (Intuitive Surgical Inc., Sunnyvale, CA) is the most widely used system for robot-assisted laparoscopic procedures. Robots also have great potentiality in Microsurgical applications, where human limits are crucial and surgical sub-millimetric gestures could have enormous benefits with motion scaling and tremor compensation. However, surgical robots still lack advanced assistive control methods that could notably support surgeon's activity and perform surgical tasks in autonomy for a high quality of intervention. In this scenario, images are the main feedback the surgeon can use to correctly operate in the surgical site. Therefore, in view of the increasing autonomy in surgical robotics, vision-based techniques play an important role and can arise by extending computer vision algorithms to surgical scenarios. Moreover, many surgical tasks could benefit from the application of advanced control techniques, allowing the surgeon to work under less stressful conditions and performing the surgical procedures with more accuracy and safety. The thesis starts from these topics, providing surgical robots the ability to perform complex tasks helping the surgeon to skillfully manipulate the robotic system to accomplish the above requirements. An increase in safety and a reduction in mental workload is achieved through the introduction of active constraints, that can prevent the surgical tool from crossing a forbidden region and similarly generate constrained motion to guide the surgeon on a specific path, or to accomplish robotic autonomous tasks. This leads to the development of a vision-based method for robot-aided dissection procedure allowing the control algorithm to autonomously adapt to environmental changes during the surgical intervention using stereo images elaboration. Computer vision is exploited to define a surgical tools collision avoidance method that uses Forbidden Region Virtual Fixtures by rendering a repulsive force to the surgeon. Advanced control techniques based on an optimization approach are developed, allowing multiple tasks execution with task definition encoded through Control Barrier Functions (CBFs) and enhancing haptic-guided teleoperation system during suturing procedures. The proposed methods are tested on a different robotic platform involving da Vinci Research Kit robot (dVRK) and a new microsurgical robotic platform. Finally, the integration of new sensors and instruments in surgical robots are considered, including a multi-functional tool for dexterous tissues manipulation and different visual sensing technologies

    Upper limb movement control after stroke and in healthy ageing: does intensive upper limb neurorehabilitation improve motor control and reduce motor impairment in the chronic phase of stroke?

    Get PDF
    Stroke affects people of all ages, but many are in the elderly population. 75% of stroke survivors have residual upper limb motor impairment and resultant disability. This thesis firstly examines upper limb motor control in chronic stroke. Evidence is emerging that high dose, high intensity complex neurorehabilitation interventions in chronic stroke patients produce unprecedented gains on clinical outcome scores of motor impairment, function and activity. But whether these clinical improvements represent behavioural repair or merely behavioural compensation remains undetermined. To address this question, upper limb movement kinematics, strength and joint range and clinical scores were measured in 52 chronic stroke patients before and after an intensive three-week treatment intervention. 29 chronic stroke patients who had not undergone treatment were similarly assessed, three-weeks apart. Significant improvements in motor control, arm strength and joint range in addition to gains on clinical scores were observed in the impaired arm of the intervention group. Crucially, changes in motor control occurred independently of changes in strength and joint range. Improvements in motor control were retained in a cohort of 28 patients in the intervention group, also assessed 6-weeks and 6-months after treatment had ended, demonstrating persistent changes in motor behaviour. These results suggest that behavioural restitution has occurred. Secondly, knowledge of the effects of normal healthy ageing on upper limb motor control is essential to informing research and delivery of clinical services. To this end, movement kinematics were measured in both arms of 57 healthy adults aged 22 to 82 years. A decline in motor control was observed as age increased, particularly in the non-dominant arm. However, motor control in healthy adults of all ages remained significantly better than in chronic stroke patients pre- and post-intervention. This thesis provides new evidence that treatment-driven improvements in motor control are achievable in the chronic post-stroke upper limb, which strongly suggests that motor control should remain a therapeutic target well beyond the current three to six-month post-stroke window. It will inform the continued development and delivery of high dose, high intensity upper limb neurorehabilitation treatment interventions for stroke patients of all ages

    Technology for the Future: In-Space Technology Experiments Program, part 2

    Get PDF
    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiments Program In-STEP 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/ university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part two of two parts and contains the critical technology presentations for the eight theme elements and a summary listing of critical space technology needs for each theme
    • …
    corecore