3,918 research outputs found

    A Multi-view Context-aware Approach to Android Malware Detection and Malicious Code Localization

    Full text link
    Existing Android malware detection approaches use a variety of features such as security sensitive APIs, system calls, control-flow structures and information flows in conjunction with Machine Learning classifiers to achieve accurate detection. Each of these feature sets provides a unique semantic perspective (or view) of apps' behaviours with inherent strengths and limitations. Meaning, some views are more amenable to detect certain attacks but may not be suitable to characterise several other attacks. Most of the existing malware detection approaches use only one (or a selected few) of the aforementioned feature sets which prevent them from detecting a vast majority of attacks. Addressing this limitation, we propose MKLDroid, a unified framework that systematically integrates multiple views of apps for performing comprehensive malware detection and malicious code localisation. The rationale is that, while a malware app can disguise itself in some views, disguising in every view while maintaining malicious intent will be much harder. MKLDroid uses a graph kernel to capture structural and contextual information from apps' dependency graphs and identify malice code patterns in each view. Subsequently, it employs Multiple Kernel Learning (MKL) to find a weighted combination of the views which yields the best detection accuracy. Besides multi-view learning, MKLDroid's unique and salient trait is its ability to locate fine-grained malice code portions in dependency graphs (e.g., methods/classes). Through our large-scale experiments on several datasets (incl. wild apps), we demonstrate that MKLDroid outperforms three state-of-the-art techniques consistently, in terms of accuracy while maintaining comparable efficiency. In our malicious code localisation experiments on a dataset of repackaged malware, MKLDroid was able to identify all the malice classes with 94% average recall

    Automatically Discovering, Reporting and Reproducing Android Application Crashes

    Full text link
    Mobile developers face unique challenges when detecting and reporting crashes in apps due to their prevailing GUI event-driven nature and additional sources of inputs (e.g., sensor readings). To support developers in these tasks, we introduce a novel, automated approach called CRASHSCOPE. This tool explores a given Android app using systematic input generation, according to several strategies informed by static and dynamic analyses, with the intrinsic goal of triggering crashes. When a crash is detected, CRASHSCOPE generates an augmented crash report containing screenshots, detailed crash reproduction steps, the captured exception stack trace, and a fully replayable script that automatically reproduces the crash on a target device(s). We evaluated CRASHSCOPE's effectiveness in discovering crashes as compared to five state-of-the-art Android input generation tools on 61 applications. The results demonstrate that CRASHSCOPE performs about as well as current tools for detecting crashes and provides more detailed fault information. Additionally, in a study analyzing eight real-world Android app crashes, we found that CRASHSCOPE's reports are easily readable and allow for reliable reproduction of crashes by presenting more explicit information than human written reports.Comment: 12 pages, in Proceedings of 9th IEEE International Conference on Software Testing, Verification and Validation (ICST'16), Chicago, IL, April 10-15, 2016, pp. 33-4

    Continuous, Evolutionary and Large-Scale: A New Perspective for Automated Mobile App Testing

    Full text link
    Mobile app development involves a unique set of challenges including device fragmentation and rapidly evolving platforms, making testing a difficult task. The design space for a comprehensive mobile testing strategy includes features, inputs, potential contextual app states, and large combinations of devices and underlying platforms. Therefore, automated testing is an essential activity of the development process. However, current state of the art of automated testing tools for mobile apps poses limitations that has driven a preference for manual testing in practice. As of today, there is no comprehensive automated solution for mobile testing that overcomes fundamental issues such as automated oracles, history awareness in test cases, or automated evolution of test cases. In this perspective paper we survey the current state of the art in terms of the frameworks, tools, and services available to developers to aid in mobile testing, highlighting present shortcomings. Next, we provide commentary on current key challenges that restrict the possibility of a comprehensive, effective, and practical automated testing solution. Finally, we offer our vision of a comprehensive mobile app testing framework, complete with research agenda, that is succinctly summarized along three principles: Continuous, Evolutionary and Large-scale (CEL).Comment: 12 pages, accepted to the Proceedings of 33rd IEEE International Conference on Software Maintenance and Evolution (ICSME'17

    FraudDroid: Automated Ad Fraud Detection for Android Apps

    Get PDF
    Although mobile ad frauds have been widespread, state-of-the-art approaches in the literature have mainly focused on detecting the so-called static placement frauds, where only a single UI state is involved and can be identified based on static information such as the size or location of ad views. Other types of fraud exist that involve multiple UI states and are performed dynamically while users interact with the app. Such dynamic interaction frauds, although now widely spread in apps, have not yet been explored nor addressed in the literature. In this work, we investigate a wide range of mobile ad frauds to provide a comprehensive taxonomy to the research community. We then propose, FraudDroid, a novel hybrid approach to detect ad frauds in mobile Android apps. FraudDroid analyses apps dynamically to build UI state transition graphs and collects their associated runtime network traffics, which are then leveraged to check against a set of heuristic-based rules for identifying ad fraudulent behaviours. We show empirically that FraudDroid detects ad frauds with a high precision (93%) and recall (92%). Experimental results further show that FraudDroid is capable of detecting ad frauds across the spectrum of fraud types. By analysing 12,000 ad-supported Android apps, FraudDroid identified 335 cases of fraud associated with 20 ad networks that are further confirmed to be true positive results and are shared with our fellow researchers to promote advanced ad fraud detectionComment: 12 pages, 10 figure

    Keeping Context In Mind: Automating Mobile App Access Control with User Interface Inspection

    Full text link
    Recent studies observe that app foreground is the most striking component that influences the access control decisions in mobile platform, as users tend to deny permission requests lacking visible evidence. However, none of the existing permission models provides a systematic approach that can automatically answer the question: Is the resource access indicated by app foreground? In this work, we present the design, implementation, and evaluation of COSMOS, a context-aware mediation system that bridges the semantic gap between foreground interaction and background access, in order to protect system integrity and user privacy. Specifically, COSMOS learns from a large set of apps with similar functionalities and user interfaces to construct generic models that detect the outliers at runtime. It can be further customized to satisfy specific user privacy preference by continuously evolving with user decisions. Experiments show that COSMOS achieves both high precision and high recall in detecting malicious requests. We also demonstrate the effectiveness of COSMOS in capturing specific user preferences using the decisions collected from 24 users and illustrate that COSMOS can be easily deployed on smartphones as a real-time guard with a very low performance overhead.Comment: Accepted for publication in IEEE INFOCOM'201

    Automating Software Development for Mobile Computing Platforms

    Get PDF
    Mobile devices such as smartphones and tablets have become ubiquitous in today\u27s computing landscape. These devices have ushered in entirely new populations of users, and mobile operating systems are now outpacing more traditional desktop systems in terms of market share. The applications that run on these mobile devices (often referred to as apps ) have become a primary means of computing for millions of users and, as such, have garnered immense developer interest. These apps allow for unique, personal software experiences through touch-based UIs and a complex assortment of sensors. However, designing and implementing high quality mobile apps can be a difficult process. This is primarily due to challenges unique to mobile development including change-prone APIs and platform fragmentation, just to name a few. in this dissertation we develop techniques that aid developers in overcoming these challenges by automating and improving current software design and testing practices for mobile apps. More specifically, we first introduce a technique, called Gvt, that improves the quality of graphical user interfaces (GUIs) for mobile apps by automatically detecting instances where a GUI was not implemented to its intended specifications. Gvt does this by constructing hierarchal models of mobile GUIs from metadata associated with both graphical mock-ups (i.e., created by designers using photo-editing software) and running instances of the GUI from the corresponding implementation. Second, we develop an approach that completely automates prototyping of GUIs for mobile apps. This approach, called ReDraw, is able to transform an image of a mobile app GUI into runnable code by detecting discrete GUI-components using computer vision techniques, classifying these components into proper functional categories (e.g., button, dropdown menu) using a Convolutional Neural Network (CNN), and assembling these components into realistic code. Finally, we design a novel approach for automated testing of mobile apps, called CrashScope, that explores a given android app using systematic input generation with the intrinsic goal of triggering crashes. The GUI-based input generation engine is driven by a combination of static and dynamic analyses that create a model of an app\u27s GUI and targets common, empirically derived root causes of crashes in android apps. We illustrate that the techniques presented in this dissertation represent significant advancements in mobile development processes through a series of empirical investigations, user studies, and industrial case studies that demonstrate the effectiveness of these approaches and the benefit they provide developers
    • …
    corecore