23,859 research outputs found

    On the feasibility of collaborative green data center ecosystems

    Get PDF
    The increasing awareness of the impact of the IT sector on the environment, together with economic factors, have fueled many research efforts to reduce the energy expenditure of data centers. Recent work proposes to achieve additional energy savings by exploiting, in concert with customers, service workloads and to reduce data centers’ carbon footprints by adopting demand-response mechanisms between data centers and their energy providers. In this paper, we debate about the incentives that customers and data centers can have to adopt such measures and propose a new service type and pricing scheme that is economically attractive and technically realizable. Simulation results based on real measurements confirm that our scheme can achieve additional energy savings while preserving service performance and the interests of data centers and customers.Peer ReviewedPostprint (author's final draft

    Will 5G See its Blind Side? Evolving 5G for Universal Internet Access

    Get PDF
    Internet has shown itself to be a catalyst for economic growth and social equity but its potency is thwarted by the fact that the Internet is off limits for the vast majority of human beings. Mobile phones---the fastest growing technology in the world that now reaches around 80\% of humanity---can enable universal Internet access if it can resolve coverage problems that have historically plagued previous cellular architectures (2G, 3G, and 4G). These conventional architectures have not been able to sustain universal service provisioning since these architectures depend on having enough users per cell for their economic viability and thus are not well suited to rural areas (which are by definition sparsely populated). The new generation of mobile cellular technology (5G), currently in a formative phase and expected to be finalized around 2020, is aimed at orders of magnitude performance enhancement. 5G offers a clean slate to network designers and can be molded into an architecture also amenable to universal Internet provisioning. Keeping in mind the great social benefits of democratizing Internet and connectivity, we believe that the time is ripe for emphasizing universal Internet provisioning as an important goal on the 5G research agenda. In this paper, we investigate the opportunities and challenges in utilizing 5G for global access to the Internet for all (GAIA). We have also identified the major technical issues involved in a 5G-based GAIA solution and have set up a future research agenda by defining open research problems

    Toward a zero carbon energy policy in Europe: Defining a feasible and viable solution.

    Get PDF
    Reducing the European Union GHG emissions by at least 80% by 2050 will require a near zero carbon electricity, road and rail transport industry, and heating and cooling in buildings. As compared to "business as usual" the amount of energy required will basically vary according to the level of energy efficiency: it is the "system scale". Then it is the "system design" which will provide the needed carbon-free technologies consisting of renewable, nuclear and fossil fuels with carbon capture and storage. . A zero carbon energy system by 2050 is then demonstrated to be feasible. However it is far from easy and requires immediate and substantial policy action. The main policy implications are addressed in this paper. The 5 years 2010-2015 will be decisive in establishing a regulatory environment whereby the EU will be in a position, by 2020, to take the next steps to achieve the 2050 goal..EU Energy Policy; Emission Rights; Carbon free electricity production; regulation of electricity industry

    Decarbonizing the European Electric Power Sector by 2050: A tale of three studies

    Get PDF
    If Europe is serious about climate change, it has to reduce its overall greenhouse gas emissions by 80% by 2050, thereby effectively going to a (near-) zero carbon energy and thus, electricity system. The European Climate Foundation, Eurelectric, and the International Energy Agency have consequently published a study elaborating on the final goal of this transition. The studies project scenarios of how such a (near-) zero electricity system would look like and provide recommendations on the policies needed to guide the transition. In this paper, we observe that these studies tell a tale with many similarities. In spite of increased energy efficiency, the electricity demand is projected to increase substantially, with up to 50% from today towards 2050, due to shifts from other sectors towards electricity. This demand will be supplied by a minimum of 40% electricity generation by RES, with the remainder being filled up with nuclear and fossils with CCS. The importance of grid reinforcement, expansion, and planning in this context is emphasized in all three studies. While all three studies further recommend relying on the EU ETS for the transition, the European Climate Foundation and the International Energy Agency consider continuing with targets for RES in combination with a more harmonized EU RES support scheme.European Energy Policy; Electric power generation; decarbonization

    Unlocking the potential of the smart metering technology: How can regulation level the playing-field for new services in smart grids?

    Get PDF
    By integrating a communications system with the existing power grid, smart grids provide end-to-end connectivity. This enables all entities and components integrated in the electricity supply system to exchange information without knowing the network's structure. New services and applications such as demand response or virtual power plants that will aid to improve and optimize the use of electricity depend on the availability of a smart grid communication network. End-to-end communication networks require that the missing communications gap between consumers' premises and the remaining energy network is bridged by deploying an Advanced Metering Infrastructure (AMI). Given the current liberalized electricity markets' structure incumbent distribution system operators (DSOs) will control the AMI and the meter data. This gives rise to concerns about anti-competitiveness. We argue that leveraging the AMI in a social welfare maximizing way requires non-discriminatory access for all entitled parties to the (1) AMI and the (2) meter data through (3) interoperable standards. We discuss possible regulatory remedies to ensure a level playing-field for innovative services in smart grids and consider implications for research and regulation. --Regulation,Smart Grid,Smart Meter,Antitrust

    Nepal Himalaya Offers Considerable Potential for Pumped Storage Hydropower

    Full text link
    There is a pressing need for a transition from fossil-fuel to renewable energy to meet the increasing energy demands and reduce greenhouse gas emissions. The Nepal Himalaya possesses substantial renewable energy potential that can be harnessed through hydropower projects due to its peculiar topographic characteristics and abundant water resources. However, the current exploitation rate is low owing to the predominance of run-of-river hydropower systems to support the nation's power system. The utility-scale storage facility is crucial in the load scenario of an integrated Nepalese power system to manage diurnal variation, peak demand, and penetration of intermittent energy sources. In this study, we first identify the potential of pumped storage hydropower across the country under multiple configurations by pairing lakes, hydropower projects, rivers, and available flat terrains. We then identify technically feasible pairs from those of potential locations. Infrastructural, environmental, operational, and other technical constraints govern the choice of feasible locations. We find the flat land-to-river configuration most promising over other configurations for Nepal. Our results provide insight into the potential of pumped storage hydropower and are of practical importance in planning sustainable power systems in the Himalayas

    Optimizing the Structure and Scale of Urban Water Infrastructure: Integrating Distributed Systems

    Get PDF
    Large-scale, centralized water infrastructure has provided clean drinking water, wastewater treatment, stormwater management and flood protection for U.S. cities and towns for many decades, protecting public health, safety and environmental quality. To accommodate increasing demands driven by population growth and industrial needs, municipalities and utilities have typically expanded centralized water systems with longer distribution and collection networks. This approach achieves financial and institutional economies of scale and allows for centralized management. It comes with tradeoffs, however, including higher energy demands for longdistance transport; extensive maintenance needs; and disruption of the hydrologic cycle, including the large-scale transfer of freshwater resources to estuarine and saline environments.While smaller-scale distributed water infrastructure has been available for quite some time, it has yet to be widely adopted in urban areas of the United States. However, interest in rethinking how to best meet our water and sanitation needs has been building. Recent technological developments and concerns about sustainability and community resilience have prompted experts to view distributed systems as complementary to centralized infrastructure, and in some situations the preferred alternative.In March 2014, the Johnson Foundation at Wingspread partnered with the Water Environment Federation and the Patel College of Global Sustainability at the University of South Florida to convene a diverse group of experts to examine the potential for distributed water infrastructure systems to be integrated with or substituted for more traditional water infrastructure, with a focus on right-sizing the structure and scale of systems and services to optimize water, energy and sanitation management while achieving long-term sustainability and resilience

    Natural resources conservation management and strategies in agriculture

    Get PDF
    This paper suggests a holistic framework for assessment and improvement of management strategies for conservation of natural resources in agriculture. First, it incorporates an interdisciplinary approach (combining Economics, Organization, Law, Sociology, Ecology, Technology, Behavioral and Political Sciences) and presents a modern framework for assessing environmental management and strategies in agriculture including: specification of specific “managerial needs” and spectrum of feasible governance modes (institutional environment; private, collective, market, and public modes) of natural resources conservation at different level of decision-making (individual, farm, eco-system, local, regional, national, transnational, and global); specification of critical socio-economic, natural, technological, behavioral etc. factors of managerial choice, and feasible spectrum of (private, collective, public, international) managerial strategies; assessment of efficiency of diverse management strategies in terms of their potential to protect diverse eco-rights and investments, assure socially desirable level of environmental protection and improvement, minimize overall (implementing, third-party, transaction etc.) costs, coordinate and stimulate eco-activities, meet preferences and reconcile conflicts of individuals etc. Second, it presents evolution and assesses the efficiency of diverse management forms and strategies for conservation of natural resources in Bulgarian agriculture during post-communist transformation and EU integration (institutional, market, private, and public), and evaluates the impacts of EU CAP on environmental sustainability of farms of different juridical type, size, specialization and location. Finally, it suggests recommendations for improvement of public policies, strategies and modes of intervention, and private and collective strategies and actions for effective environmental protection

    Cogeneration: An option to facilitate load following in Small Modular Reactors

    Get PDF
    Nuclear Power Plants (NPPs) have been historically deployed to cover the base-load of the electricity demand. Nowadays some NPPs might perform daily load cycling operation (i.e. load following) between 50% and 100% of their rated power. With respect to the insertion of control rods or comparable action to reduce the nuclear power generation, a more efficient alternative might be the “Load Following by Cogeneration”, i.e. diverting the excess of power, respect to the electricity demand, to an auxiliary system. A suitable cogeneration system needs: 1. To have a demand of electricity and/or heat in the region of 500 MWe–1.5 GWt; 2. To meet a significant market demand; 3. To have access to adequate input to process; 4. To be flexible: cogeneration might operate at full load during the night when the request of electricity is low, and be turned off during the daytime. From the economic standpoint, it is essential that the investment in the auxiliary system is profitable. This paper provides a techno-economic assessment of systems potentially suitable for coupling with a NPP for load following. The results show that district heating, desalination and hydrogen might be technically and economically feasible
    • …
    corecore