4,000 research outputs found

    Wellness, Fitness, and Lifestyle Sensing Applications

    Get PDF

    Measuring attention using Microsoft Kinect

    Get PDF
    The transfer of knowledge between individuals has increasingly become achieved with the aid of interfaces or computerized training applications. However, computer based training currently lacks the ability to monitor human behavioral changes and respond to them accordingly. This study examines the ability to predict user attention using features of body posture and head pose. Predictive abilities are assessed by an analysis of the relationship between the measured posture features and common objective measures of attention, such as reaction time and reaction time variance. Subjects were asked to participate in a series of sustained attention tasks while aspects of body movement and positioning were recorded using a Microsoft Kinect. Results showed support for identifiable patterns of behavior associated with attention while also suggesting the complex inter-relationship of measured features and susceptibility of these features to environmental conditions

    Advances in transfer learning methods based on computational intelligence

    Get PDF
    Traditional machine learning and data mining have made tremendous progress in many knowledge-based areas, such as clustering, classification, and regression. However, the primary assumption in all of these areas is that the training and testing data should be in the same domain and have the same distribution. This assumption is difficult to achieve in real-world applications due to the limited availability of labeled data. Associated data in different domains can be used to expand the availability of prior knowledge about future target data. In recent years, transfer learning has been used to address such cross-domain learning problems by using information from data in a related domain and transferring that data to the target task. The transfer learning methodology is utilized in this work with unsupervised and supervised learning methods. For unsupervised learning, a novel transfer-learning possibilistic c-means (TLPCM) algorithm is proposed to handle the PCM clustering problem in a domain that has insufficient data. Moreover, TLPCM overcomes the problem of differing numbers of clusters between the source and target domains. The proposed algorithm employs the historical cluster centers of the source data as a reference to guide the clustering of the target data. The experimental studies presented here were thoroughly evaluated, and they demonstrate the advantages of TLPCM in both synthetic and real-world transfer datasets. For supervised learning, a transfer learning (TL) technique is used to pre-train a CNN model on posture data and then fine-tune it on the sleep stage data. We used a ballistocardiography (BCG) bed sensor to collect both posture and sleep stage data to provide a non-invasive, in-home monitoring system that tracks changes in the subjects' health over time. The quality of sleep has a significant impact on health and life. This study adopts a hierarchical and none-hierarchical classification structure to develop an automatic sleep stage classification system using ballistocardiogram (BCG) signals. A leave-one-subject-out cross-validation (LOSO-CV) procedure is used for testing classification performance in most of the experiments. Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM), and Deep Neural Networks DNNs are complementary in their modeling capabilities, while CNNs have the advantage of reducing frequency variations, LSTMs are good at temporal modeling. Polysomnography (PSG) data from a sleep lab was used as the ground truth for sleep stages, with the emphasis on three sleep stages, specifically, awake, rapid eye movement (REM), and non-REM sleep (NREM). Moreover, a transfer learning approach is employed with supervised learning to address the cross-resident training problem to predict early illness. We validate our method by conducting a retrospective study on three residents from TigerPlace, a retirement community in Columbia, MO, where apartments are fitted with wireless networks of motion and bed sensors. Predicting the early signs of illness in older adults by using a continuous, unobtrusive nursing home monitoring system has been shown to increase the quality of life and decrease care costs. Illness prediction is based on sensor data and uses algorithms such as support vector machine (SVM) and k-nearest neighbors (kNN). One of the most significant challenges related to the development of prediction algorithms for sensor networks is the use of knowledge from previous residents to predict new ones' behaviors. Each day, the presence or absence of illness was manually evaluated using nursing visit reports from a homegrown electronic medical record (EMR) system. In this work, the transfer learning SVM approach outperformed three other methods, i.e., regular SVM, one-class SVM, and one-class kNN.Includes bibliographical references (pages 114-127)

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 187

    Get PDF
    This supplement to Aerospace Medicine and Biology lists 247 reports, articles and other documents announced during November 1978 in Scientific and Technical Aerospace Reports (STAR) or in International Aerospace Abstracts (IAA). In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which man is subjected during and following simulated or actual flight in the earth's atmosphere or in interplanetary space. References describing similar effects of biological organisms of lower order are also included. Emphasis is placed on applied research, but reference to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the bibliography consists of a bibliographic citation accompanied in most cases by an abstract

    A review of activity trackers for senior citizens: research perspectives, commercial landscape and the role of the insurance industry

    Get PDF
    The objective assessment of physical activity levels through wearable inertial-based motion detectors for the automatic, continuous and long-term monitoring of people in free-living environments is a well-known research area in the literature. However, their application to older adults can present particular constraints. This paper reviews the adoption of wearable devices in senior citizens by describing various researches for monitoring physical activity indicators, such as energy expenditure, posture transitions, activity classification, fall detection and prediction, gait and balance analysis, also by adopting consumer-grade fitness trackers with the associated limitations regarding acceptability. This review also describes and compares existing commercial products encompassing activity trackers tailored for older adults, thus providing a comprehensive outlook of the status of commercially available motion tracking systems. Finally, the impact of wearable devices on life and health insurance companies, with a description of the potential benefits for the industry and the wearables market, was analyzed as an example of the potential emerging market drivers for such technology in the future

    Animal Welfare Assessment

    Get PDF
    This Special Issue provides a collection of recent research and reviews that investigate many areas of welfare assessment, such as novel approaches and technologies used to evaluate the welfare of farmed, captive, or wild animals. Research in this Special Issue includes welfare assessment related to pilot whales, finishing pigs, commercial turkey flocks, and dairy goats; the use of sensors or wearable technologies, such as heart rate monitors to assess sleep in dairy cows, ear tag sensors, and machine learning to assess commercial pig behaviour; non-invasive measures, such as video monitoring of behaviour, computer vision to analyse video footage of red foxes, remote camera traps of free-roaming wild horses, infrared thermography of effort and sport recovery in sport horses; telomere length and regulatory genes as novel biomarkers of stress in broiler chickens; the effect of environment on growth physiology and behaviour of laboratory rare minnows and housing system on anxiety, stress, fear, and immune function of laying hens; and discussions of natural behaviour in farm animal welfare and maintaining health, welfare, and productivity of commercial pig herds

    A multimodal dataset of real world mobility activities in Parkinson’s disease

    Get PDF
    Parkinson’s disease (PD) is a neurodegenerative disorder characterised by motor symptoms such as gait dysfunction and postural instability. Technological tools to continuously monitor outcomes could capture the hour-by-hour symptom fluctuations of PD. Development of such tools is hampered by the lack of labelled datasets from home settings. To this end, we propose REMAP (REal-world Mobility Activities in Parkinson’s disease), a human rater-labelled dataset collected in a home-like setting. It includes people with and without PD doing sit-to-stand transitions and turns in gait. These discrete activities are captured from periods of free-living (unobserved, unstructured) and during clinical assessments. The PD participants withheld their dopaminergic medications for a time (causing increased symptoms), so their activities are labelled as being “on” or “off” medications. Accelerometry from wrist-worn wearables and skeleton pose video data is included. We present an open dataset, where the data is coarsened to reduce re-identifiability, and a controlled dataset available on application which contains more refined data. A use-case for the data to estimate sit-to-stand speed and duration is illustrated

    Data-driven methods for analyzing ballistocardiograms in longitudinal cardiovascular monitoring

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of death in the US; about 48% of American adults have one or more types of CVD. The importance of continuous monitoring of the older population, for early detection of changes in health conditions, has been shown in the literature, as the key to a successful clinical intervention. We have been investigating environmentally-embedded in-home networks of non-invasive sensing modalities. This dissertation concentrates on the signal processing techniques required for the robust extraction of morphological features from the ballistocardiographs (BCG), and machine learning approaches to utilize these features in non-invasive monitoring of cardiovascular conditions. At first, enhancements in the time domain detection of the cardiac cycle are addressed due to its importance in the estimation of heart rate variability (HRV) and sleep stages. The proposed enhancements in the energy-based algorithm for BCG beat detection have shown at least 50% improvement in the root mean square error (RMSE) of the beat to beat heart rate estimations compared to the reference estimations from the electrocardiogram (ECG) R to R intervals. These results are still subject to some errors, primarily due to the contamination of noise and motion artifacts caused by floor vibration, unconstrained subject movements, or even the respiratory activities. Aging, diseases, breathing, and sleep disorders can also affect the quality of estimation as they slightly modify the morphology of the BCG waveform.Includes bibliographical reference
    • …
    corecore