982 research outputs found

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    Integration of LoRa Wide Area Network with the 5G Test Network

    Get PDF
    Abstract. The global communication network is going through major transformation from conventional to more versatile and diversified network approaches. With the advent of virtualization and cloud technology, information technology (IT) is merging with telecommunications to alter the conventional approaches of traditional proprietary networking techniques. From radio to network and applications, the existing infrastructure lacks several features that we wished to be part of 5th Generation Mobile Networks (5G). Having a support for large number of applications, Internet of Things (IoT) will bring a major evolution by creating a comfortable, flexible and an automated environment for end users. A network having the capability to support radio protocols on top of basic networking protocols, when blended with a platform which can generate IoT use cases, can make the expectations of 5G a reality. Low Power Wide Area Network (LPWAN) technologies can be utilized with other emerging and suitable technologies for IoT applications. To implement a network where all the technologies can be deployed virtually to serve their applications within a single cloud, Network Functions Virtualization (NFV) and Software Defined Network (SDN) is introduced to implement such a networking possibility for upcoming technologies. The 5G Test Network (5GTN), a testbed for implementing and testing 5G features in real time, is deployed in virtual platform which allows to add other technologies for IoT applications. To implement a network with an IoT enabler technology, LoRa Wide Area Network (LoRaWAN) technology can be integrated to test the feasibility and capability of IoT implications. LoRaWAN being an IoT enabler technology is chosen out of several possibilities to be integrated with the 5GTN. Using MultiConnect Conduit as a gateway, the integration is realized by establishing point to point protocol (PPP) connection with eNodeB. Once the connection is established, LoRa packets are forwarded to the ThingWorx IoT cloud and responses can be received by the end-devices from that IoT cloud by using Message Queuing Telemetry Transport (MQTT) protocol. Wireshark, an open source packet analyser, is then used to ensure successful transmission of packets to the ThingWorx using the 5GTN default packet routes

    A Case Study of Edge Computing Implementations: Multi-access Edge Computing, Fog Computing and Cloudlet

    Get PDF
    With the explosive growth of intelligent and mobile devices, the current centralized cloud computing paradigm is encountering difficult challenges. Since the primary requirements have shifted towards implementing real-time response and supporting context awareness and mobility, there is an urgent need to bring resources and functions of centralized clouds to the edge of networks, which has led to the emergence of the edge computing paradigm. Edge computing increases the responsibilities of network edges by hosting computation and services, therefore enhancing performances and improving quality of experience (QoE). Fog computing, multi-access edge computing (MEC), and cloudlet are three typical and promising implementations of edge computing. Fog computing aims to build a system that enables cloud-to-thing service connectivity and works in concert with clouds, MEC is seen as a key technology of the fifth generation (5G) system, and Cloudlet is a micro-data center deployed in close proximity. In terms of deployment scenarios, Fog computing focuses on the Internet of Things (IoT), MEC mainly provides mobile RAN application solutions for 5G systems, and cloudlet offloads computing power at the network edge. In this paper, we present a comprehensive case study on these three edge computing implementations, including their architectures, differences, and their respective application scenario in IoT, 5G wireless systems, and smart edge. We discuss the requirements, benefits, and mechanisms of typical co-deployment cases for each paradigm and identify challenges and future directions in edge computing
    • ā€¦
    corecore