325 research outputs found

    Decentralized Formation Control with A Quadratic Lyapunov Function

    Full text link
    In this paper, we investigate a decentralized formation control algorithm for an undirected formation control model. Unlike other formation control problems where only the shape of a configuration counts, we emphasize here also its Euclidean embedding. By following this decentralized formation control law, the agents will converge to certain equilibrium of the control system. In particular, we show that there is a quadratic Lyapunov function associated with the formation control system whose unique local (global) minimum point is the target configuration. In view of the fact that there exist multiple equilibria (in fact, a continuum of equilibria) of the formation control system, and hence there are solutions of the system which converge to some equilibria other than the target configuration, we apply simulated annealing, as a heuristic method, to the formation control law to fix this problem. Simulation results show that sample paths of the modified stochastic system approach the target configuration

    Robustness issues in double-integrator undirected rigid formation systems

    Get PDF
    In this paper we consider rigid formation control systems modelled by double integrators (including formation stabilization systems and flocking control systems), with a focus on their robustness property in the presence of distance mismatch. By introducing additional state variables we show the augmented double-integrator distance error system is self-contained, and we prove the exponential stability of the distance error systems via linearization analysis. As a consequence of the exponential stability, the distance error still converges in the presence of small and constant distance mismatches, while additional motions of the resulted formation will occur. We further analyze the rigid motions induced by constant mismatches for both double-integrator formation stabilisation systems and flocking control systems.This work was supported by the Australian Research Council (ARC) under grant DP130103610 and DP160104500. Z. Sun was supported by the Australian Prime Minister's Endeavour Postgraduate Award from Australian Government. The work of S. Mou was supported by funding from Northrop Grumman Corporation

    Unmanned vehicles formation control in 3D space and cooperative search

    Get PDF
    The first problem considered in this dissertation is the decentralized non-planar formation control of multiple unmanned vehicles using graph rigidity. The three-dimensional formation control problem consists of n vehicles operating in a plane Q and r vehicles that operate in an upper layer outside of the plane Q. This can be referred to as a layered formation control where the objective is for all vehicles to cooperatively acquire a predefined formation shape using a decentralized control law. The proposed control strategy is based on regulating the inter-vehicle distances and uses backstepping and Lyapunov approaches. Three different models, with increasing level of complexity are considered for the multi-vehicle system: the single integrator vehicle model, the double integrator vehicle model, and a model that represents the dynamics of a class of robotics vehicles including wheeled mobile robots, underwater vehicles with constant depth, aircraft with constant altitude, and marine vessels. A rigorous stability analysis is presented that guarantees convergence of the inter-vehicle distances to desired values. Additionally, a new Neural Network (NN)-based control algorithm that uses graph rigidity and relative positions of the vehicles is proposed to solve the formation control problem of unmanned vehicles in 3D space. The control law for each vehicle consists of a nonlinear component that is dependent on the closed-loop error dynamics plus a NN component that is linear in the output weights (a one-tunable layer NN is used). A Lyapunov analysis shows that the proposed distance-based control strategy achieves the uniformly ultimately bounded stability of the desired infinitesimally and minimally rigid formation and that NN weights remain bounded. Simulation results are included to demonstrate the performance of the proposed method. The second problem addressed in this dissertation is the cooperative unmanned vehicles search. In search and surveillance operations, deploying a team of unmanned vehicles provides a robust solution that has multiple advantages over using a single vehicle in efficiency and minimizing exploration time. The cooperative search problem addresses the challenge of identifying target(s) in a given environment when using a team of unmarried vehicles by proposing a novel method of mapping and movement of vehicle teams in a cooperative manner. The approach consists of two parts. First, the region is partitioned into a hexagonal beehive structure in order to provide equidistant movements in every direction and to allow for more natural and flexible environment mapping. Additionally, in search environments that are partitioned into hexagons, the vehicles have an efficient travel path while performing searches due to this partitioning approach. Second, a team of unmanned vehicles that move in a cooperative manner and utilize the Tabu Random algorithm is used to search for target(s). Due to the ever-increasing use of robotics and unmanned systems, the field of cooperative multi-vehicle search has developed many applications recently that would benefit from the use of the approach presented in this dissertation, including: search and rescue operations, surveillance, data collection, and border patrol. Simulation results are presented that show the performance of the Tabu Random search algorithm method in combination with hexagonal partitioning

    Distance-Based Formation Control of Multi-Agent Systems

    Get PDF
    This Ph.D. dissertation studies the distance-based formation control of multi-agent systems. A new approach to the distance-based formation control problem is proposed in this thesis. We formulated distance-based formation in a nonlinear optimal control framework and used the state-dependent Riccati equation (SDRE) technique as the primary tool for solving the optimal control problem. In general, a distance-based formation can be undirected, where distance constraints between pairs of agents are actively controlled by both adjacent agents, or directed, where just one of the neighboring agents is responsible for maintaining the desired distance. This thesis presents both, undirected and directed formations, and provides extensive simulations to verify the theoretical results. For undirected topologies, we studied the formation control problem where we showed that the proposed control law results in the global asymptotic stability of the closed-loop system under certain conditions. The formation tracking problem was studied, and the uniform ultimate boundedness of the solutions is rigorously proven. The proposed method guarantees collision avoidance among neighboring agents and prevents depletion of the agents' energy. In the directed distance-based formation control case, we developed a distributed, hierarchical control scheme for a particular class of directed graphs, namely directed triangulated and trilateral Laman graphs. The proposed controller ensures the global asymptotic stability of the desired formation. Rigorous stability analyses are carried out in all cases. Moreover, we addressed the flip-ambiguity issue by using the signed area and signed volume constraints. Additionally, we introduced a performance index for a formation mission that can indicate the controller's overall performance. We also studied the distance-based formation control of nonlinear agents. We proposed a method that can guarantee asymptotic stability of the distance-based formation for a broad category of nonlinear systems. Furthermore, we studied a distance-based formation control of uncertain nonlinear agents. Based on the combination of integral sliding mode control (ISMC) theory with the SDRE method, we developed a robust optimal formation control scheme that guarantees asymptotic stability of the desired distance-based formation in the presence of bounded uncertainties. We have shown that the proposed controller can compensate for the effect of uncertainties in individual agents on the overall formation

    Distributed formation control for manipulator end-effectors

    Get PDF
    We present three classes of distributed formation controllers for achieving and maintaining the 2D/3D formation shape of manipulator end-effectors to cope with different scenarios due to availability of modeling parameters. We firstly present a distributed formation controller for manipulators whose system parameters are perfectly known. The formation control objective is achieved by assigning virtual springs between end-effectors and by adding damping terms at joints, which provides a clear physical interpretation of the proposed solution. Subsequently, we extend it to the case where manipulator kinematic and system parameters are not exactly known. An extra integrator and an adaptive estimator are introduced for gravitational compensation and stabilization, respectively. Simulation results with planar manipulators and with seven degree-of-freedom humanoid manipulator arms are presented to illustrate the effectiveness of the proposed approach.Comment: arXiv admin note: text overlap with arXiv:2103.1459
    corecore