21 research outputs found

    Opto-VLSI based WDM multifunction device

    Get PDF
    The tremendous expansion of telecommunication services in the past decade, in part due to the growth of the Internet, has made the development of high-bandwidth optical net-works a focus of research interest. The implementation of Dense-Wavelength Division Multiplexing (DWDM) optical fiber transmission systems has the potential to meet this demand. However, crucial components of DWDM networks – add/drop multiplexers, filters, gain equalizers as well as interconnects between optical channels – are currently not implemented as dynamically reconfigurable devices. Electronic cross-connects, the traditional solution to the reconfigurable optical networks, are increasingly not feasible due to the rapidly increasing bandwidth of the optical channels. Thus, optically transparent, dynamically reconfigurable DWDM components are important for alleviating the bottleneck in telecommunication systems of the future. In this study, we develop a promising class of Opto-VLSI based devices, including a dynamic multi-function WDM processor, combining the functions of optical filter, channel equalizer and add-drop multiplexer, as well as a reconfigurable optical power splitter. We review the technological options for all optical WDM components and compare their advantages and disadvantages. We develop a model for designing Opto-VLSI based WDM devices, and demonstrate experimentally the Opto-VLSI multi-function WDM device. Finally, we discuss the feasibility of Opto-VLSI WDM components in meeting the stringent requirements of the optical communications industry

    Liquid Crystal Optics for Applications

    Get PDF
    In this Special Issue, you will find new directions in the research on liquid crystal applications. To be honest, we were surprised to find 10 papers covering a variety of application areas, with no overlap between them. The only important application without a related article was “display”! This was exactly the situation we hoped for. In this Special Issue, you can find 10 articles discussing the applications of LC devices or LC materials. The applications are liquid crystal on silicon (LCOS) for optical communication, laser processing and wireless optical charging, wavelength selective filters, waveguides, smart windows, LCDs for terahertz waves, LC polymers for polarizing grating and LC material for an ink.We believe that this Special Issue will help researchers focusng on optical devices or LC materials to obtain inspiration for new devices using liquid crystals

    Indoor Full-Body Security Screening: Radiometric Microwave Imaging Phenomenology and Polarimetric Scene Simulation

    Get PDF
    The paper discusses the scene simulation of radiometric imagers and its use to illustrate the phenomenology of full-body screening of people for weapons and threats concealed under clothing. The aperture synthesis technique is introduced as this offers benefits of wide field-of-views and large depths-of-fields in a system that is potentially conformally deployable in the confined spaces of building entrances and at airport departure lounges. The technique offers a non-invasive, non-cooperative screening capability to scrutinize all human body surfaces for illegal items. However, for indoor operation, the realization of this capability is challenging due to the low radiation temperature contrasts in imagery. The contrast is quantified using a polarimetric radiometric layer model of the clothed human subject concealing threats. A radiation frequency of 20 GHz was chosen for the simulation as system component costs here are relatively low and the attainable half-wavelength spatial resolution of 7.5 mm is sufficient for screening. The contrasts against the human body of the threat materials of metal, zirconia ceramic, carbon fiber, nitrogen-based energetic materials, yellow beeswax, and water were calculated to be ≀7 K. Furthermore, the model indicates how some threats frequency modulate the radiation temperatures by ~ ±1 K. These results are confirmed by experiments using a radiometer measuring left-hand circularly polarized radiation. It is also shown using scene simulation how circularly polarized radiation has benefits for reducing false alarms and how threat objects appear in canyon regions of the body, such as between the legs and in the armpits

    Development and Characterization of a Dispersion-Encoded Method for Low-Coherence Interferometry

    Get PDF
    This Open Access book discusses an extension to low-coherence interferometry by dispersion-encoding. The approach is theoretically designed and implemented for applications such as surface profilometry, polymeric cross-linking estimation and the determination of thin-film layer thicknesses. During a characterization, it was shown that an axial measurement range of 79.91 ”m with an axial resolution of 0.1 nm is achievable. Simultaneously, profiles of up to 1.5 mm in length were obtained in a scan-free manner. This marked a significant improvement in relation to the state-of-the-art in terms of dynamic range. Also, the axial and lateral measurement range were decoupled partially while functional parameters such as surface roughness were estimated. The characterization of the degree of polymeric cross-linking was performed as a function of the refractive index. It was acquired in a spatially-resolved manner with a resolution of 3.36 x 10-5. This was achieved by the development of a novel mathematical analysis approach

    Microelectromechanical Systems and Devices

    Get PDF
    The advances of microelectromechanical systems (MEMS) and devices have been instrumental in the demonstration of new devices and applications, and even in the creation of new fields of research and development: bioMEMS, actuators, microfluidic devices, RF and optical MEMS. Experience indicates a need for MEMS book covering these materials as well as the most important process steps in bulk micro-machining and modeling. We are very pleased to present this book that contains 18 chapters, written by the experts in the field of MEMS. These chapters are groups into four broad sections of BioMEMS Devices, MEMS characterization and micromachining, RF and Optical MEMS, and MEMS based Actuators. The book starts with the emerging field of bioMEMS, including MEMS coil for retinal prostheses, DNA extraction by micro/bio-fluidics devices and acoustic biosensors. MEMS characterization, micromachining, macromodels, RF and Optical MEMS switches are discussed in next sections. The book concludes with the emphasis on MEMS based actuators

    Development and Characterization of a Dispersion-Encoded Method for Low-Coherence Interferometry

    Get PDF
    This Open Access book discusses an extension to low-coherence interferometry by dispersion-encoding. The approach is theoretically designed and implemented for applications such as surface profilometry, polymeric cross-linking estimation and the determination of thin-film layer thicknesses. During a characterization, it was shown that an axial measurement range of 79.91 ”m with an axial resolution of 0.1 nm is achievable. Simultaneously, profiles of up to 1.5 mm in length were obtained in a scan-free manner. This marked a significant improvement in relation to the state-of-the-art in terms of dynamic range. Also, the axial and lateral measurement range were decoupled partially while functional parameters such as surface roughness were estimated. The characterization of the degree of polymeric cross-linking was performed as a function of the refractive index. It was acquired in a spatially-resolved manner with a resolution of 3.36 x 10-5. This was achieved by the development of a novel mathematical analysis approach

    Cavity Optomechanics with High Stress Silicon Nitride Films

    Get PDF
    There has been a barrage of interest in recent years to marry the fields of nanomechanics and quantum optics. Mechanical systems provide sensitive and scalable architectures for sensing applications ranging from atomic force microscopy to gravity wave interferometry. Optical resonators driven by low noise lasers provide a quiet and well-understood means to read-out and manipulate mechanical motion, by way of the radiation pressure force. Taken to an extreme, a device consisting of a high-Q nanomechanical oscillator coupled to a high-finesse optical cavity may enable ground-state preparation of the mechanical element, thus paving the way for a new class of quantum technology based on chip-scale phononic devices coupled to optical photons. By way of mutual coupling to the optical field, this architecture may enable coupling of single phonons to real or artificial atoms, an enticing prospect because of the vast "quantum optics toolbox" already developed for cavity quantum electrodynamics. The first step towards these goals --- ground-state cooling of the mechanical element in a "cavity optomechanical" system --- has very recently been realized in a cryogenic setup. The work presented in this thesis describes an effort to extend this capability to a room temperature apparatus, so that the usual panoply of table-top optical/atomic physics tools can be brought to bear. This requires a mechanical oscillator with exceptionally low dissipation, as well as careful attention to extraneous sources of noise in both the optical and mechanical componentry. Our particular system is based on a high-Q, high-stress silicon nitride membrane coupled to a high-finesse Fabry-Perot cavity. The purpose of this thesis is to record in detail the procedure for characterizing/modeling the physical properties of the membrane resonator, the optical cavity, and their mutual interaction, as well as extraneous sources of noise related to multimode thermal motion of the oscillator, thermal motion of the cavity apparatus, optical absorption, and laser phase fluctuations. Our principle experimental result is the radiation pressure-based cooling of a high order, 4.8 MHz drum mode of the membrane from room temperature to ~ 100 mK (~ 500 phonons). Secondary results include an investigation of the Q-factor of membrane oscillators with various geometries, some of which exhibit state-of-the-art Q x frequency products of 3 x 10^13 Hz, and a novel technique to suppress extraneous radiation pressure noise using electro-optic feedback.</p

    Advances in Optofluidics

    Get PDF
    Optofluidics a niche research field that integrates optics with microfluidics. It started with elegant demonstrations of the passive interaction of light and liquid media such as liquid waveguides and liquid tunable lenses. Recently, the optofluidics continues the advance in liquid-based optical devices/systems. In addition, it has expanded rapidly into many other fields that involve lightwave (or photon) and liquid media. This Special Issue invites review articles (only review articles) that update the latest progress of the optofluidics in various aspects, such as new functional devices, new integrated systems, new fabrication techniques, new applications, etc. It covers, but is not limited to, topics such as micro-optics in liquid media, optofluidic sensors, integrated micro-optical systems, displays, optofluidics-on-fibers, optofluidic manipulation, energy and environmental applciations, and so on

    Reconfigurable Kirigami Optics and Chiral Phonons

    Full text link
    All atoms and chemical bonds vibrate at natural frequencies associated with their physical properties. Scientists therefore use resonance-based spectroscopy to investigate the structural characteristics and dynamics of molecules in several research areas. However, it has been arduous to observe and identify complex vibrational modes of biomolecules and tissues with excitations in the terahertz (THz) range. In this work, we report on the development of THz circular dichroism spectroscopy enabled by kirigami polarization modulator and their applications for probing mesoscale chiral architectures and vibrations from the (bio) materials. Also, we show that hyperspectral THz chiroptical spectroscopy enables registration and attribution of chiral phonons in microcrystals of numerous amino acids and dipeptides. Terahertz circular dichroism (TCD) offers multifaceted spectroscopic capabilities for understanding of biomaterials, biomolecules, and pharmaceuticals because the energy of THz photons enables probing the ‘soft’ oscillatory vibrations of biomolecules with distinct chirality. However, the lack of dynamic polarization modulators is impeding the proliferation of TCD spectroscopy. In the Chapter 3 of this dissertation, we show that tunable optical elements fabricated from patterned plasmonic sheets with periodic kirigami cuts make possible polarization modulation of THz radiation under application of mechanical strain. A herringbone pattern of microscale metal stripes enables dynamic range of polarization modulation exceeding 80 degree repeatable over thousands of cycles. Upon out-of-plane buckling, the plasmonic stripes function as reconfigurable semi-helices of variable pitch aligned along the THz propagation direction. Several biomaterials, exemplified by elytra of Chrysina gloriosa beetles, revealed distinct TCD fingerprints associated with the helical substructure in the bio-composites. Chiral phonons, complex lattice vibrations modes with mirror asymmetry, have been known only for a small number of low-dimensional inorganic nanostructures. Abundant chiral phonon modes can also be expected for crystals of many biomolecules but experimental and theoretical toolbox on their observation and identification is unknown. Besides much larger variety of vibrational modes, chiral phonons in biological crystals can also be medically relevant. In the Chapter 4 of the dissertation, we show that terahertz absorption (TA), circular dichroism (TCD), and optical rotation dispersion (TORD) provide effective tools for the registration and identification of chiral phonons in micro-crystals of 20 proteinogenic L- and D-amino acids (AAs). Theoretical predictions and molecular dynamics simulations of chiral phonon in AA crystals provided direct evidence for the molecular origins of TCD and TORD spectra, which are dominated by collective motions of AA molecules. Generality of these findings can be highlighted by the observation of chiral phonons in crystals of dipeptides cystine and carnosine, which also demonstrates direct relevance of chiral phonons for medical and pharmaceutical applications.PHDMaterials Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/168046/1/wonjchoi_1.pd

    Pulsed Free Space Photonic Vector Network Analyzers

    Get PDF
    Terahertz (THz) radiation (0.1–10 THz) has demonstrated great significance in a wide range of interdisciplinary applications due to its unique properties such as the capacity to penetrate optically opaque materials without ionizing effect, superior spatial resolution as compared to the microwave domain for imaging or ability to identify a vast array of molecules using THz fingerprinting. Advancements in generation and detection techniques, as well as the necessities of application-driven research and industry, have created a substantial demand for THz-range devices and components. However, progress in the development of THz components is hampered by a lack of efficient and affordable characterization systems, resulting in limited development in THz science and technology. Vector Network Analyzers (VNAs) are highly sophisticated well-established characterization instruments in the microwave bands, which are now employed in the lower end of the THz spectrum (up to 1.5 THz) using frequency extender modules. These modules are extremely expensive, and due to the implementation of hollow metallic waveguides for their configuration, they are narrowband, requiring at least six modules to achieve a frequency coverage of 0.2–1.5 THz. Moreover, they are susceptible to problems like material losses, manufacturing and alignment tolerances etc., making them less than ideal for fast, broadband investigation. The main objective of this thesis is to design a robust but cost-effective characterization system based on a photonic method that can characterize THz components up to several THz in a single configuration. To achieve this, we design architectures for the Photonic Vector Network Analyzer (PVNA) concept, incorporating ErAs:In(Al)GaAs-based photoconductive sources and ErAs:InGaAs-based photoconductive receivers, driven with a femtosecond pulsed laser operating at 1550 nm. The broadband photonic devices replace narrowband electronic ones in order to record the Scattering (S)-parameters in a free space configuration. Corresponding calibration and data evaluation methods are also developed. Then the PVNAs are configured, and their capabilities are validated by characterizing various THz components, including a THz isolator, a distributed Bragg Reflector, a Split-Ring Resonator array and a Crossed-Dipole Resonator (CDR) array, in terms of their S-parameters. The PVNAs are also implemented to determine the complex refractive index or dielectric permittivity and physical thickness of several materials in the THz range. Finally, we develop an ErAs:In(Al)GaAs-based THz transceiver and implement it in a PVNA configuration, resulting in a more compact setup that is useful for industrial applications. The feasibility of such systems is also verified by characterizing several THz components. The configured systems achieve a bandwidth of more than 2.5 THz, exceeding the maximum attainable frequency of the commercial Electronic Vector Network Analyzer (EVNA) extender modules. For the 1.1-1.5 THz band, the dynamic range of 47-35 dB (Equivalent Noise Bandwidth (ENBW) = 9.196 Hz) achieved with the PVNA is comparable to the dynamic range of 45-25 dB (ENBW = 10 Hz) of the EVNA. Both amplitude and phase of the S-parameters, determined by the configured PVNAs, are compared with simulations or theoretical models and showed excellent agreement. The PVNA could discern multi-peak and narrow resonance characteristics despite its lower spectral resolution (∌3-7 GHz) compared to the EVNA. By accurately determining the S-parameters of multiple THz components, the transceiver-based PVNA also demonstrated its exceptional competence. With huge bandwidth and simpler calibration techniques, the PVNA provides a potential solution to bridge the existing technological gap in THz-range characterization systems and offers a solid platform for THz component development, paving the way for more widespread application of THz technologies in research and industry
    corecore