1,018 research outputs found

    Cognitive satellite communications and representation learning for streaming and complex graphs.

    Get PDF
    This dissertation includes two topics. The first topic studies a promising dynamic spectrum access algorithm (DSA) that improves the throughput of satellite communication (SATCOM) under the uncertainty. The other topic investigates distributed representation learning for streaming and complex networks. DSA allows a secondary user to access the spectrum that are not occupied by primary users. However, uncertainty in SATCOM causes more spectrum sensing errors. In this dissertation, the uncertainty has been addressed by formulating a DSA decision-making process as a Partially Observable Markov Decision Process (POMDP) model to optimally determine which channels to sense and access. Large-scale networks have attracted many attentions to discover the hidden information from big data. Particularly, representation learning embeds the network into a lower vector space while maximally preserving the similarity among nodes. I propose a real-time distributed graph embedding algorithm (RTDGE) which is capable of distributively embedding the streaming graph by combining a novel edge partition approach and an incremental negative sample approach. Furthermore, a platform is prototyped based on Kafka and Storm. Real-time Twitter network data can be retrieved, partitioned and processed for state-of-art tasks. For knowledge graphs, existing works cannot capture the complex connection patterns and never consider the impacts from complicated relations, due to the unquantifiable relationships. A novel embedding algorithm is proposed to hierarchically measure the structural similarity and the impacts from relations by constructing a multi-layer graph. Then, an advanced representation learning model is designed based on an entity\u27s context generated by random walks on the multi-layer content graph

    Web Service Retrieval by Structured Models

    Get PDF
    Much of the information available on theWorldWideWeb cannot effectively be found by the help of search engines because the information is dynamically generated on a user’s request.This applies to online decision support services as well as Deep Web information. We present in this paper a retrieval system that uses a variant of structured modeling to describe such information services, and similarity of models for retrieval. The computational complexity of the similarity problem is discussed, and graph algorithms for retrieval on repositories of service descriptions are introduced. We show how bounds for combinatorial optimization problems can provide filter algorithms in a retrieval context. We report about an evaluation of the retrieval system in a classroom experiment and give computational results on a benchmark library.Economics ;

    Symmetric continuous subgraph matching with bidirectional dynamic programming

    Get PDF
    6sĂŹopenIn many real datasets such as social media streams and cyber data sources, graphs change over time through a graph update stream of edge insertions and deletions. Detecting critical patterns in such dynamic graphs plays an important role in various application domains such as fraud detection, cyber security, and recommendation systems for social networks. Given a dynamic data graph and a query graph, the continuous subgraph matching problem is to find all positive matches for each edge insertion and all negative matches for each edge deletion. The state-of-the-art algorithm TurboFlux uses a spanning tree of a query graph for filtering. However, using the spanning tree may have a low pruning power because it does not take into account all edges of the query graph. In this paper, we present a symmetric and much faster algorithm SymBi which maintains an auxiliary data structure based on a directed acyclic graph instead of a spanning tree, which maintains the intermediate results of bidirectional dynamic programming between the query graph and the dynamic graph. Extensive experiments with real and synthetic datasets show that SymBi outperforms the state-of-the-art algorithm by up to three orders of magnitude in terms of the elapsed time.openAccademicoMin S.; Park S.G.; Park K.; Giammarresi D.; Italiano G.F.; Han W.-S.Min, S.; Park, S. G.; Park, K.; Giammarresi, D.; Italiano, G. F.; Han, W. -S

    Parallel Exchange of Randomized SubGraphs for Optimization of Network Alignment: PERSONA

    Get PDF
    The aim of Network Alignment in Protein-Protein Interaction Networks is discovering functionally similar regions between compared organisms. One major compromise for solving a network alignment problem is the trade-off among multiple similarity objectives while applying an alignment strategy. An alignment may lose its biological relevance while favoring certain objectives upon others due to the actual relevance of unfavored objectives. One possible solution for solving this issue may be blending the stronger aspects of various alignment strategies until achieving mature solutions. This study proposes a parallel approach called PERSONA that allows aligners to share their partial solutions continuously while they progress. All these aligners pursue their particular heuristics as part of a particle swarm that searches for multi-objective solutions of the same alignment problem in a reactive actor environment. The actors use the stronger portion of a solution as a subgraph that they receive from leading or other actors and send their own stronger subgraphs back upon evaluation of those partial solutions. Moreover, the individual heuristics of each actor takes randomized parameter values at each cycle of parallel execution so that the problem search space can thoroughly be investigated. The results achieved with PERSONA are remarkably optimized and balanced for both topological and node similarity objectives

    On efficient temporal subgraph query processing

    Get PDF

    Visual analytics for relationships in scientific data

    Get PDF
    Domain scientists hope to address grand scientific challenges by exploring the abundance of data generated and made available through modern high-throughput techniques. Typical scientific investigations can make use of novel visualization tools that enable dynamic formulation and fine-tuning of hypotheses to aid the process of evaluating sensitivity of key parameters. These general tools should be applicable to many disciplines: allowing biologists to develop an intuitive understanding of the structure of coexpression networks and discover genes that reside in critical positions of biological pathways, intelligence analysts to decompose social networks, and climate scientists to model extrapolate future climate conditions. By using a graph as a universal data representation of correlation, our novel visualization tool employs several techniques that when used in an integrated manner provide innovative analytical capabilities. Our tool integrates techniques such as graph layout, qualitative subgraph extraction through a novel 2D user interface, quantitative subgraph extraction using graph-theoretic algorithms or by querying an optimized B-tree, dynamic level-of-detail graph abstraction, and template-based fuzzy classification using neural networks. We demonstrate our system using real-world workflows from several large-scale studies. Parallel coordinates has proven to be a scalable visualization and navigation framework for multivariate data. However, when data with thousands of variables are at hand, we do not have a comprehensive solution to select the right set of variables and order them to uncover important or potentially insightful patterns. We present algorithms to rank axes based upon the importance of bivariate relationships among the variables and showcase the efficacy of the proposed system by demonstrating autonomous detection of patterns in a modern large-scale dataset of time-varying climate simulation
    • …
    corecore