24,913 research outputs found

    Toward Learning a Unified Many-to-Many Mapping for Diverse Image Translation

    Full text link
    Image-to-image translation, which translates input images to a different domain with a learned one-to-one mapping, has achieved impressive success in recent years. The success of translation mainly relies on the network architecture to reserve the structural information while modify the appearance slightly at the pixel level through adversarial training. Although these networks are able to learn the mapping, the translated images are predictable without exclusion. It is more desirable to diversify them using image-to-image translation by introducing uncertainties, i.e., the generated images hold potential for variations in colors and textures in addition to the general similarity to the input images, and this happens in both the target and source domains. To this end, we propose a novel generative adversarial network (GAN) based model, InjectionGAN, to learn a many-to-many mapping. In this model, the input image is combined with latent variables, which comprise of domain-specific attribute and unspecific random variations. The domain-specific attribute indicates the target domain of the translation, while the unspecific random variations introduce uncertainty into the model. A unified framework is proposed to regroup these two parts and obtain diverse generations in each domain. Extensive experiments demonstrate that the diverse generations have high quality for the challenging image-to-image translation tasks where no pairing information of the training dataset exits. Both quantitative and qualitative results prove the superior performance of InjectionGAN over the state-of-the-art approaches

    Diverse Image-to-Image Translation via Disentangled Representations

    Full text link
    Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.Comment: ECCV 2018 (Oral). Project page: http://vllab.ucmerced.edu/hylee/DRIT/ Code: https://github.com/HsinYingLee/DRIT

    Network-to-Network Translation with Conditional Invertible Neural Networks

    Full text link
    Given the ever-increasing computational costs of modern machine learning models, we need to find new ways to reuse such expert models and thus tap into the resources that have been invested in their creation. Recent work suggests that the power of these massive models is captured by the representations they learn. Therefore, we seek a model that can relate between different existing representations and propose to solve this task with a conditionally invertible network. This network demonstrates its capability by (i) providing generic transfer between diverse domains, (ii) enabling controlled content synthesis by allowing modification in other domains, and (iii) facilitating diagnosis of existing representations by translating them into interpretable domains such as images. Our domain transfer network can translate between fixed representations without having to learn or finetune them. This allows users to utilize various existing domain-specific expert models from the literature that had been trained with extensive computational resources. Experiments on diverse conditional image synthesis tasks, competitive image modification results and experiments on image-to-image and text-to-image generation demonstrate the generic applicability of our approach. For example, we translate between BERT and BigGAN, state-of-the-art text and image models to provide text-to-image generation, which neither of both experts can perform on their own.Comment: NeurIPS 2020 (oral). Code at https://github.com/CompVis/net2ne

    A Novel BiLevel Paradigm for Image-to-Image Translation

    Full text link
    Image-to-image (I2I) translation is a pixel-level mapping that requires a large number of paired training data and often suffers from the problems of high diversity and strong category bias in image scenes. In order to tackle these problems, we propose a novel BiLevel (BiL) learning paradigm that alternates the learning of two models, respectively at an instance-specific (IS) and a general-purpose (GP) level. In each scene, the IS model learns to maintain the specific scene attributes. It is initialized by the GP model that learns from all the scenes to obtain the generalizable translation knowledge. This GP initialization gives the IS model an efficient starting point, thus enabling its fast adaptation to the new scene with scarce training data. We conduct extensive I2I translation experiments on human face and street view datasets. Quantitative results validate that our approach can significantly boost the performance of classical I2I translation models, such as PG2 and Pix2Pix. Our visualization results show both higher image quality and more appropriate instance-specific details, e.g., the translated image of a person looks more like that person in terms of identity

    Attribute Guided Unpaired Image-to-Image Translation with Semi-supervised Learning

    Full text link
    Unpaired Image-to-Image Translation (UIT) focuses on translating images among different domains by using unpaired data, which has received increasing research focus due to its practical usage. However, existing UIT schemes defect in the need of supervised training, as well as the lack of encoding domain information. In this paper, we propose an Attribute Guided UIT model termed AGUIT to tackle these two challenges. AGUIT considers multi-modal and multi-domain tasks of UIT jointly with a novel semi-supervised setting, which also merits in representation disentanglement and fine control of outputs. Especially, AGUIT benefits from two-fold: (1) It adopts a novel semi-supervised learning process by translating attributes of labeled data to unlabeled data, and then reconstructing the unlabeled data by a cycle consistency operation. (2) It decomposes image representation into domain-invariant content code and domain-specific style code. The redesigned style code embeds image style into two variables drawn from standard Gaussian distribution and the distribution of domain label, which facilitates the fine control of translation due to the continuity of both variables. Finally, we introduce a new challenge, i.e., disentangled transfer, for UIT models, which adopts the disentangled representation to translate data less related with the training set. Extensive experiments demonstrate the capacity of AGUIT over existing state-of-the-art models

    One-Shot Unsupervised Cross Domain Translation

    Full text link
    Given a single image x from domain A and a set of images from domain B, our task is to generate the analogous of x in B. We argue that this task could be a key AI capability that underlines the ability of cognitive agents to act in the world and present empirical evidence that the existing unsupervised domain translation methods fail on this task. Our method follows a two step process. First, a variational autoencoder for domain B is trained. Then, given the new sample x, we create a variational autoencoder for domain A by adapting the layers that are close to the image in order to directly fit x, and only indirectly adapt the other layers. Our experiments indicate that the new method does as well, when trained on one sample x, as the existing domain transfer methods, when these enjoy a multitude of training samples from domain A. Our code is made publicly available at https://github.com/sagiebenaim/OneShotTranslationComment: Published at NIPS 201

    Multi-mapping Image-to-Image Translation via Learning Disentanglement

    Full text link
    Recent advances of image-to-image translation focus on learning the one-to-many mapping from two aspects: multi-modal translation and multi-domain translation. However, the existing methods only consider one of the two perspectives, which makes them unable to solve each other's problem. To address this issue, we propose a novel unified model, which bridges these two objectives. First, we disentangle the input images into the latent representations by an encoder-decoder architecture with a conditional adversarial training in the feature space. Then, we encourage the generator to learn multi-mappings by a random cross-domain translation. As a result, we can manipulate different parts of the latent representations to perform multi-modal and multi-domain translations simultaneously. Experiments demonstrate that our method outperforms state-of-the-art methods.Comment: Accepted by NeurIPS 2019. Code will be available at https://github.com/Xiaoming-Yu/DMI

    Mix and match networks: cross-modal alignment for zero-pair image-to-image translation

    Full text link
    This paper addresses the problem of inferring unseen cross-modal image-to-image translations between multiple modalities. We assume that only some of the pairwise translations have been seen (i.e. trained) and infer the remaining unseen translations (where training pairs are not available). We propose mix and match networks, an approach where multiple encoders and decoders are aligned in such a way that the desired translation can be obtained by simply cascading the source encoder and the target decoder, even when they have not interacted during the training stage (i.e. unseen). The main challenge lies in the alignment of the latent representations at the bottlenecks of encoder-decoder pairs. We propose an architecture with several tools to encourage alignment, including autoencoders and robust side information and latent consistency losses. We show the benefits of our approach in terms of effectiveness and scalability compared with other pairwise image-to-image translation approaches. We also propose zero-pair cross-modal image translation, a challenging setting where the objective is inferring semantic segmentation from depth (and vice-versa) without explicit segmentation-depth pairs, and only from two (disjoint) segmentation-RGB and depth-RGB training sets. We observe that a certain part of the shared information between unseen modalities might not be reachable, so we further propose a variant that leverages pseudo-pairs which allows us to exploit this shared information between the unseen modalities.Comment: Accepted by IJC

    PI-REC: Progressive Image Reconstruction Network With Edge and Color Domain

    Full text link
    We propose a universal image reconstruction method to represent detailed images purely from binary sparse edge and flat color domain. Inspired by the procedures of painting, our framework, based on generative adversarial network, consists of three phases: Imitation Phase aims at initializing networks, followed by Generating Phase to reconstruct preliminary images. Moreover, Refinement Phase is utilized to fine-tune preliminary images into final outputs with details. This framework allows our model generating abundant high frequency details from sparse input information. We also explore the defects of disentangling style latent space implicitly from images, and demonstrate that explicit color domain in our model performs better on controllability and interpretability. In our experiments, we achieve outstanding results on reconstructing realistic images and translating hand drawn drafts into satisfactory paintings. Besides, within the domain of edge-to-image translation, our model PI-REC outperforms existing state-of-the-art methods on evaluations of realism and accuracy, both quantitatively and qualitatively.Comment: 15 pages, 13 figure

    Multi-Mapping Image-to-Image Translation with Central Biasing Normalization

    Full text link
    Recent advances in image-to-image translation have seen a rise in approaches generating diverse images through a single network. To indicate the target domain for a one-to-many mapping, the latent code is injected into the generator network. However, we found that the injection method leads to mode collapse because of normalization strategies. Existing normalization strategies might either cause the inconsistency of feature distribution or eliminate the effect of the latent code. To solve these problems, we propose the consistency within diversity criteria for designing the multi-mapping model. Based on the criteria, we propose central biasing normalization to inject the latent code information. Experiments show that our method can improve the quality and diversity of existing image-to-image translation models, such as StarGAN, BicycleGAN, and pix2pix
    • …
    corecore