24,270 research outputs found

    Neural Control of Interlimb Coordination and Gait Timing in Bipeds and Quadrupeds

    Full text link
    1) A large body of behavioral data conceming animal and human gaits and gait transitions is simulated as emergent properties of a central pattern generator (CPG) model. The CPG model incorporates neurons obeying Hodgkin-Huxley type dynamics that interact via an on-center off-surround anatomy whose excitatory signals operate on a faster time scale than their inhibitory signals. A descending cornmand or arousal signal called a GO signal activates the gaits and controL their transitions. The GO signal and the CPG model are compared with neural data from globus pallidus and spinal cord, among other brain structures. 2) Data from human bimanual finger coordination tasks are simulated in which anti-phase oscillations at low frequencies spontaneously switch to in-phase oscillations at high frequencies, in-phase oscillations can be performed both at low and high frequencies, phase fluctuations occur at the anti-phase in-phase transition, and a "seagull effect" of larger errors occurs at intermediate phases. When driven by environmental patterns with intermediate phase relationships, the model's output exhibits a tendency to slip toward purely in-phase and anti-phase relationships as observed in humans subjects. 3) Quadruped vertebrate gaits, including the amble, the walk, all three pairwise gaits (trot, pace, and gallop) and the pronk are simulated. Rapid gait transitions are simulated in the order--walk, trot, pace, and gallop--that occurs in the cat, along with the observed increase in oscillation frequency. 4) Precise control of quadruped gait switching is achieved in the model by using GO-dependent modulation of the model's inhibitory interactions. This generates a different functional connectivity in a single CPG at different arousal levels. Such task-specific modulation of functional connectivity in neural pattern generators has been experimentally reported in invertebrates. Phase-dependent modulation of reflex gain has been observed in cats. A role for state-dependent modulation is herein predicted to occur in vertebrates for precise control of phase transitions from one gait to another. 5) The primary human gaits (the walk and the run) and elephant gaits (the amble and the walk) are sirnulated. Although these two gaits are qualitatively different, they both have the same limb order and may exhibit oscillation frequencies that overlap. The CPG model simulates the walk and the run by generating oscillations which exhibit the same phase relationships. but qualitatively different waveform shapes, at different GO signal levels. The fraction of each cycle that activity is above threshold quantitatively distinguishes the two gaits, much as the duty cycles of the feet are longer in the walk than in the run. 6) A key model properly concerns the ability of a single model CPG, that obeys a fixed set of opponent processing equations to generate both in-phase and anti-phase oscillations at different arousal levels. Phase transitions from either in-phase to anti-phase oscillations, or from anti-phase to in-phase oscillations, can occur in different parameter ranges, as the GO signal increases.Air Force Office of Scientific Research (90-0128, F49620-92-J-0225, 90-0175); National Science Foundation (IRI-90-24877); Office of Naval Research (N00014-92-J-1309); Army Research Office (DAAL03-88-K-0088); Advanced Research Projects Agency (90-0083

    Neural Control of Interlimb Oscillations II. Biped and Quadruped Gaits and Bifurications

    Full text link
    Behavioral data concerning animal and human gaits and gait transitions are simulated as emergent properties of a central pattern generator (CPG) model. The CPG model is a version of the Ellias-Grossberg oscillator. Its neurons obey Hodgkin-Huxley type equations whose excitatory signals operate on a faster time scale than their inhibitory signals in a recurrent on-center off-surround anatomy. A descending command or GO signal activates the gaits and triggers gait transitions as its amplitude increases. A single model CPG can generate both in-phase and anti-phase oscillations at different GO amplitudes. Phase transition from either in-phase to anti-phase oscillations, or from anti-phase to in-phase oscillations, can occur in different parameter ranges, as the GO signal increases. Quadruped vertebrate gaits, including the amble, the walk, all three pairwise gaits (trot, pace, and gallop), and the pronk are simulated using this property. Rapid gait transitions are simulated in the order walk, trot, pace, and gallop that occurs in the cat, along with the observed increase in oscillation frequency. Precise control of quadruped gait switching uses GO-dependent. modulation of inhibitory interactions, which generates a different functional anatomy at different arousal levels. The primary human gaits (the walk and the run) and elephant gaits (the amble and the walk) are simulated, without modulation, by oscillations with the same phase relationships but different waveform shapes at different GO signal levels, much as the duty cycles of the feet are longer in the walk than in the run. Relevant neural data from spinal cord, globus palliclus, and motor cortex, among other structures, are discussedArmy Research Office (DAAL03-88-K-0088); Advanced Research Projects Agency (90-0083); National Science Foundation (IRI-90-24877); Office of Naval Research (N00014-92-J-1309); Air Force Office of Scientific Research (F49620-92-J-0499, F49620-92-J-0225, 90-0128

    Üner Tan Syndrome: Review and Emergence of Human Quadrupedalism in Self-Organization,\ud Attractors and Evolutionary Perspectives\ud

    Get PDF
    The first man reported in the world literature exhibiting habitual quadrupedal locomotion was discovered by a British traveler and writer on the famous Baghdat road near Havsa/Samsun on the middle Black-Sea coast of Turkey (Childs, 1917). Interestingly, no single case with human quadrupedalism was reported in the scientific literature after Child's first description in 1917 until the first report on the Uner Tan syndrome (UTS: quadrupedalism, mental retardation, and impaired speech or no speech)in 2005 (Tan, 2005, 2006). Between 2005 and 2010, 10 families exhibiting the syndrome were discovered in Turkey with 33 cases: 14 women (42.4%) and 19 men (57.6%). Including a few cases from other countries, there were 25 men (64.1%)and 14 women (35.9%). The number of men significantly exceeded the number of women (p < .05). Genetics alone did not seem to be informative for the origins of many syndromes, including the Uner Tan syndrome. From the viewpoint of dynamical systems theory, there may not be a single factor including the neural and/or genetic codes that predetermines the emergence of the human quadrupedalism.Rather, it may involve a self-organization process, consisting of many decentralized and local interactions among neuronal, genetic, and environmental subsystems. The most remarkable characteristic of the UTS, the diagonal-sequence quadrupedalism is well developed in primates. The evolutionarily advantage of this gait is not known. However, there seems to be an evolutionarily advantage of this type of locomotion for primate evolution, with regard to the emergence of complex neural circuits with related highly complex structures. Namely, only primates with diagonal-sequence quadrupedal locomotion followed an evolution favoring larger brains, highly developed cognitive abilities with hand skills, and language, with erect posture and bipedal locomotion, creating the unity of human being. It was suggested that UTS may be considered a further example for Darwinian diseases, which may be associated with an evolutionary understanding of the disorders using evolutionary principles, such as the natural selection. On the other hand, the human quadrupedalism was proposed to be a phenotypic example of evolution of reverse, i.e., the reacquisition by derived populations of the same character states as those of ancestor populations. It was also suggested that the emergence of the human quadrupedalism may be related to self-organizing processes occurring in complex systems, which select or attract one preferred behavioral state or locomotor trait out of many possible attractor states. Concerning the locomotor patterns, the dynamical systems in brain and body of the developing child may prefer some kind of locomotion, according to interactions of the internal components and the environmental conditions, without a direct role of any causative factor(s), such as genetic or neural codes, consistent with the concept of self-organization, suggesting no single element may have a causal priority

    Adaptive, fast walking in a biped robot under neuronal control and learning

    Get PDF
    Human walking is a dynamic, partly self-stabilizing process relying on the interaction of the biomechanical design with its neuronal control. The coordination of this process is a very difficult problem, and it has been suggested that it involves a hierarchy of levels, where the lower ones, e.g., interactions between muscles and the spinal cord, are largely autonomous, and where higher level control (e.g., cortical) arises only pointwise, as needed. This requires an architecture of several nested, sensori–motor loops where the walking process provides feedback signals to the walker's sensory systems, which can be used to coordinate its movements. To complicate the situation, at a maximal walking speed of more than four leg-lengths per second, the cycle period available to coordinate all these loops is rather short. In this study we present a planar biped robot, which uses the design principle of nested loops to combine the self-stabilizing properties of its biomechanical design with several levels of neuronal control. Specifically, we show how to adapt control by including online learning mechanisms based on simulated synaptic plasticity. This robot can walk with a high speed (&gt; 3.0 leg length/s), self-adapting to minor disturbances, and reacting in a robust way to abruptly induced gait changes. At the same time, it can learn walking on different terrains, requiring only few learning experiences. This study shows that the tight coupling of physical with neuronal control, guided by sensory feedback from the walking pattern itself, combined with synaptic learning may be a way forward to better understand and solve coordination problems in other complex motor tasks
    corecore