488 research outputs found

    Research on real-time physics-based deformation for haptic-enabled medical simulation

    Full text link
    This study developed a multiple effective visuo-haptic surgical engine to handle a variety of surgical manipulations in real-time. Soft tissue models are based on biomechanical experiment and continuum mechanics for greater accuracy. Such models will increase the realism of future training systems and the VR/AR/MR implementations for the operating room

    High Fidelity Haptic Rendering for Deformable Objects Undergoing Topology Changes

    Get PDF
    International audienceThe relevance of haptic feedback for minimally invasive surgery has been demonstrated at numerous counts. However, the proposed methods often prove inadequate to handle correct contact computation during the complex interactions or topological changes that can be found in surgical interventions. In this paper, we introduce an approach that allows for accurate computation of contact forces even in the presence of topological changes due to the simulation of soft tissue cutting. We illustrate this approach with a simulation of cataract surgery, a typical example of microsurgery

    GPU-based Real-Time Soft Tissue Deformation with Cutting and Haptic Feedback

    Get PDF
    Special Issue on Biomechanical Modelling of Soft Tissue MotionInternational audienceThis article describes a series of contributions in the field of real-time simulation of soft tissue biomechanics. These contributions address various requirements for interactive simulation of complex surgical procedures. In particular, this article presents results in the areas of soft tissue deformation, contact modelling, simulation of cutting, and haptic rendering, which are all relevant to a variety of medical interventions. The contributions described in this article share a common underlying model of deformation and rely on GPU implementations to significantly improve computation times. This consistency in the modelling technique and computational approach ensures coherent results as well as efficient, robust and flexible solutions
    corecore