14 research outputs found

    Evolution of Neural Networks for Physically Simulated Evolved Virtual Quadruped Creatures

    Get PDF
    This work develops evolved virtual creatures (EVCs) using neuroevolution as the controller for movement and decisions within a 3D physics simulated environ-ment. Previous work on EVCs has displayed various behaviour such as following a light source. This work is focused on complexifying the range of behaviours available to EVCs. This work uses neuroevolution for learning specific actions combined with other controllers for making higher level decisions about which action to take in a given scenario. Results include analysis of performance of the EVCs in simulated physics environment. Various controllers are compared including a hard coded benchmark, a fixed topology feed forward artificial neural network and an evolving ANN subjected to neuroevolution by applying mutations in both topology and weights. The findings showed that both fixed topology ANNs and neuroevolution did successfully control the evolved virtual creatures in the distance travelling task

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Data for "Toward evolving robust, deliberate motion planning with HyperNEAT"

    No full text
    Parameters files for NEAT and HyperNEAT used in 'Toward evolving robust, deliberate motion planning with HyperNEAT'

    Adaptive networks for robotics and the emergence of reward anticipatory circuits

    Get PDF
    Currently the central challenge facing evolutionary robotics is to determine how best to extend the range and complexity of behaviour supported by evolved neural systems. Implicit in the work described in this thesis is the idea that this might best be achieved through devising neural circuits (tractable to evolutionary exploration) that exhibit complementary functional characteristics. We concentrate on two problem domains; locomotion and sequence learning. For locomotion we compare the use of GasNets and other adaptive networks. For sequence learning we introduce a novel connectionist model inspired by the role of dopamine in the basal ganglia (commonly interpreted as a form of reinforcement learning). This connectionist approach relies upon a new neuron model inspired by notions of energy efficient signalling. Two reward adaptive circuit variants were investigated. These were applied respectively to two learning problems; where action sequences are required to take place in a strict order, and secondly, where action sequences are robust to intermediate arbitrary states. We conclude the thesis by proposing a formal model of functional integration, encompassing locomotion and sequence learning, extending ideas proposed by W. Ross Ashby. A general model of the adaptive replicator is presented, incoporating subsystems that are tuned to continuous variation and discrete or conditional events. Comparisons are made with Ross W. Ashby's model of ultrastability and his ideas on adaptive behaviour. This model is intended to support our assertion that, GasNets (and similar networks) and reward adaptive circuits of the type presented here, are intrinsically complementary. In conclusion we present some ideas on how the co-evolution of GasNet and reward adaptive circuits might lead us to significant improvements in the synthesis of agents capable of exhibiting complex adaptive behaviour

    Interference and Volatility in Evolutionary Agent-Based Systems

    Get PDF
    Agents that exist and pursue individual goals in shared environments can indirectly affect one another in unanticipated ways, such that the actions of others in the environment can interfere with the ability to achieve goals. Despite this, the impact that these unintended interactions and interference can have on agents is not currently well understood. This is problematic as these goal-oriented agents are increasingly situated in complex sociotechnical systems, that are composed of many actors that are heterogeneous in nature. The primary aim of this thesis is to explore the effect that indirect interference from others has on evolution and goal-achieving behaviour in agent-based systems. More specifically, this is investigated in the context of agents that do not possess the ability to perceive or learn about others within the environment, as information about others may not be readily available at runtime, or there may be a distinct lack of capacity to obtain such information. By conducting three experimental studies, it is established that evolutionary volatility is a consequence of indirect interactions between goal-oriented agents in a shared environment, and that these consequences can be mitigated by designing more socially-sensitive agents. Specifically, agents that employ social action are demonstrated to reduce the evolutionary volatility experienced by goal-oriented agents, without aecting the tness received. Additionally, behavioural plasticity achieved via neuromodulation is shown to allow coexisting agents to achieve their goals more often with less evolutionary volatility in highly variable environments. While sufficient approaches to mitigate interference include learning about or modelling others, or for agents to be explicitly designed to identify interference to mitigate its consequences, this thesis demonstrates that these are not necessary. Instead, more socially-sensitive agents are shown to be capable of achieving their goals and mitigating interference without this knowledge of others, simply by shifting the focus from goal-oriented actions to more socially-oriented behaviour
    corecore