1,836 research outputs found

    Topology Recoverability Prediction for Ad-Hoc Robot Networks: A Data-Driven Fault-Tolerant Approach

    Full text link
    Faults occurring in ad-hoc robot networks may fatally perturb their topologies leading to disconnection of subsets of those networks. Optimal topology synthesis is generally resource-intensive and time-consuming to be done in real time for large ad-hoc robot networks. One should only perform topology re-computations if the probability of topology recoverability after the occurrence of any fault surpasses that of its irrecoverability. We formulate this problem as a binary classification problem. Then, we develop a two-pathway data-driven model based on Bayesian Gaussian mixture models that predicts the solution to a typical problem by two different pre-fault and post-fault prediction pathways. The results, obtained by the integration of the predictions of those pathways, clearly indicate the success of our model in solving the topology (ir)recoverability prediction problem compared to the best of current strategies found in the literature

    Evolutionary robotics : anticipation and the reality gap

    Get PDF
    Evolutionary Robotics provide efficient tools and approach to address automatic design of controllers for automous mobile robots. However, the computational cost of the optimization process makes it difficult to evolve controllers directly into the real world. This paper addresses the key problem of tranferring into the real world a robotic controller that has been evolved in a robotic simulator. The approach presented here relies on the definition of an anticipation-enabled control architecture. The anticipation module is able to build a partial model of the simulated environment and, once in the real world, performs an error estimation of this model. This error can be reused so as to perform in-situ on-line adaptation of robot control. Experiments in simulation and real-world showed that an evolved robot is able to perform on-line recovery from several kind of locomotion perturbations

    Adaptive Navigation Control for Swarms of Autonomous Mobile Robots

    Get PDF
    This paper was devoted to developing a new and general coordinated adaptive navigation scheme for large-scale mobile robot swarms adapting to geographically constrained environments. Our distributed solution approach was built on the following assumptions: anonymity, disagreement on common coordinate systems, no pre-selected leader, and no direct communication. The proposed adaptive navigation was largely composed of four functions, commonly relying on dynamic neighbor selection and local interaction. When each robot found itself what situation it was in, individual appropriate ranges for neighbor selection were defined within its limited sensing boundary and the robots properly selected their neighbors in the limited range. Through local interactions with the neighbors, each robot could maintain a uniform distance to its neighbors, and adapt their direction of heading and geometric shape. More specifically, under the proposed adaptive navigation, a group of robots could be trapped in a dead-end passage,but they merge with an adjacent group to emergently escape from the dead-end passage. Furthermore, we verified the effectiveness of the proposed strategy using our in-housesimulator. The simulation results clearly demonstrated that the proposed algorithm is a simple yet robust approach to autonomous navigation of robot swarms in highlyclutteredenvironments. Since our algorithm is local and completely scalable to any size, it is easily implementable on a wide variety of resource-constrained mobile robots andplatforms. Our adaptive navigation control for mobile robot swarms is expected to be used in many applications ranging from examination and assessment of hazardous environments to domestic applications

    QoS routing in ad-hoc networks using GA and multi-objective optimization

    Get PDF
    Much work has been done on routing in Ad-hoc networks, but the proposed routing solutions only deal with the best effort data traffic. Connections with Quality of Service (QoS) requirements, such as voice channels with delay and bandwidth constraints, are not supported. The QoS routing has been receiving increasingly intensive attention, but searching for the shortest path with many metrics is an NP-complete problem. For this reason, approximated solutions and heuristic algorithms should be developed for multi-path constraints QoS routing. Also, the routing methods should be adaptive, flexible, and intelligent. In this paper, we use Genetic Algorithms (GAs) and multi-objective optimization for QoS routing in Ad-hoc Networks. In order to reduce the search space of GA, we implemented a search space reduction algorithm, which reduces the search space for GAMAN (GA-based routing algorithm for Mobile Ad-hoc Networks) to find a new route. We evaluate the performance of GAMAN by computer simulations and show that GAMAN has better behaviour than GLBR (Genetic Load Balancing Routing).Peer ReviewedPostprint (published version

    Cooperative control of autonomous connected vehicles from a Networked Control perspective: Theory and experimental validation

    Get PDF
    Formation control of autonomous connected vehicles is one of the typical problems addressed in the general context of networked control systems. By leveraging this paradigm, a platoon composed by multiple connected and automated vehicles is represented as one-dimensional network of dynamical agents, in which each agent only uses its neighboring information to locally control its motion, while it aims to achieve certain global coordination with all other agents. Within this theoretical framework, control algorithms are traditionally designed based on an implicit assumption of unlimited bandwidth and perfect communication environments. However, in practice, wireless communication networks, enabling the cooperative driving applications, introduce unavoidable communication impairments such as transmission delay and packet losses that strongly affect the performances of cooperative driving. Moreover, in addition to this problem, wireless communication networks can suffer different security threats. The challenge in the control field is hence to design cooperative control algorithms that are robust to communication impairments and resilient to cyber attacks. The work aim is to tackle and solve these challenges by proposing different properly designed control strategies. They are validated both in analytical, numerical and experimental ways. Obtained results confirm the effectiveness of the strategies in coping with communication impairments and security vulnerabilities
    • …
    corecore