39,244 research outputs found

    Consensus-based approach to peer-to-peer electricity markets with product differentiation

    Full text link
    With the sustained deployment of distributed generation capacities and the more proactive role of consumers, power systems and their operation are drifting away from a conventional top-down hierarchical structure. Electricity market structures, however, have not yet embraced that evolution. Respecting the high-dimensional, distributed and dynamic nature of modern power systems would translate to designing peer-to-peer markets or, at least, to using such an underlying decentralized structure to enable a bottom-up approach to future electricity markets. A peer-to-peer market structure based on a Multi-Bilateral Economic Dispatch (MBED) formulation is introduced, allowing for multi-bilateral trading with product differentiation, for instance based on consumer preferences. A Relaxed Consensus+Innovation (RCI) approach is described to solve the MBED in fully decentralized manner. A set of realistic case studies and their analysis allow us showing that such peer-to-peer market structures can effectively yield market outcomes that are different from centralized market structures and optimal in terms of respecting consumers preferences while maximizing social welfare. Additionally, the RCI solving approach allows for a fully decentralized market clearing which converges with a negligible optimality gap, with a limited amount of information being shared.Comment: Accepted for publication in IEEE Transactions on Power System

    Distributed Stochastic Market Clearing with High-Penetration Wind Power

    Full text link
    Integrating renewable energy into the modern power grid requires risk-cognizant dispatch of resources to account for the stochastic availability of renewables. Toward this goal, day-ahead stochastic market clearing with high-penetration wind energy is pursued in this paper based on the DC optimal power flow (OPF). The objective is to minimize the social cost which consists of conventional generation costs, end-user disutility, as well as a risk measure of the system re-dispatching cost. Capitalizing on the conditional value-at-risk (CVaR), the novel model is able to mitigate the potentially high risk of the recourse actions to compensate wind forecast errors. The resulting convex optimization task is tackled via a distribution-free sample average based approximation to bypass the prohibitively complex high-dimensional integration. Furthermore, to cope with possibly large-scale dispatchable loads, a fast distributed solver is developed with guaranteed convergence using the alternating direction method of multipliers (ADMM). Numerical results tested on a modified benchmark system are reported to corroborate the merits of the novel framework and proposed approaches.Comment: To appear in IEEE Transactions on Power Systems; 12 pages and 9 figure

    Forward Reliability Markets: Less Risk, Less Market Power, More Efficiency

    Get PDF
    A forward reliability market is presented. The market coordinates new entry through the forward procurement of reliability options—physical capacity bundled with a financial option to supply energy above a strike price. The market assures adequate generating resources and prices capacity from the bids of competitive new entry in an annual auction. Efficient performance incentives are maintained from a load-following obligation to supply energy above the strike price. The capacity payment fully hedges load from high spot prices, and reduces supplier risk as well. Market power is reduced in the spot market, since suppliers enter the spot market with a nearly balanced position in times of scarcity. Market power in the reliability market is addressed by not allowing existing supply to impact the capacity price. The approach, which has been adopted in New England and Colombia, is readily adapted to either a thermal or a hydro system.Auctions, electricity auctions, capacity auctions, reliability auctions

    Market Design for Generation Adequacy: Healing Causes rather than Symptoms

    Get PDF
    Keywords JEL Classification This paper argues that electricity market reform – particularly the need for complementary mechanisms to remunerate capacity – need to be analysed in the light of the local regulatory and institutional environment. If there is a lack of investment, the priority should be to identify the roots of the problem. The lack of demand side response, short-term reliability management procedures and uncompetitive ancillary services procurement often undermine market reflective scarcity pricing and distort long-term investment incentives. The introduction of a capacity mechanism should come as an optional supplement to wholesale and ancillary markets improvements. Priority reforms should focus on encouraging demand side responsiveness and reducing scarcity price distortions introduced by balancing and congestion management through better dialog between network engineers and market operators. electricity market, generation adequacy, market design, capacity mechanis

    A Review of ISO New England's Proposed Market Rules

    Get PDF
    This report reviews the proposed rules for restructured wholesale electricity markets in New England. We review the market rules, both individually and collectively, and identify potential problems that might limit the efficiency of these markets. We examine alternatives and identify the key tradeoffs among alternative designs. We believe that the wholesale electricity market in New England can begin on December 1, 1998. However, improvements are needed for long-run success. We have identified four major recommendations: 1. Switch to a multi-settlement system. 2. Introduce demand-side bidding. 3. Adopt location-based transmission congestion pricing, especially for the import/export interfaces. 4. Fix the pricing of the ten minute spinning reserves.Auctions; Multiple Object Auctions; Electricity Auctions

    Congestion Management in European Power Networks: Criteria to Assess the Available Options

    Get PDF
    EU Member States are pursuing large scale investment in renewable generation in order to meet a 2020 target to source 20% of total energy sources by renewables. As the location for this new generation differs from the location of existing generation sources, and is often on the extremities of the electricity network, it will create new flow patterns and transmission needs. While congestion exists between European countries, increasing the penetration of variable sources of energy will change the current cross-border congestion profile. It becomes increasingly important for the power market design to foster the full use of existing transmission capacity and allow for robust operation even in the presence of system congestion. After identifying five criteria that an effective congestion management scheme for European countries will need, this paper critically assess to what extent the various approaches satisfy the requirements.Power market design, integrating renewables, congestion management
    corecore