422 research outputs found

    Toward community standards in the quest for orthologs

    Get PDF
    The identification of orthologs—genes pairs descended from a common ancestor through speciation, rather than duplication—has emerged as an essential component of many bioinformatics applications, ranging from the annotation of new genomes to experimental target prioritization. Yet, the development and application of orthology inference methods is hampered by the lack of consensus on source proteomes, file formats and benchmarks. The second ‘Quest for Orthologs' meeting brought together stakeholders from various communities to address these challenges. We report on achievements and outcomes of this meeting, focusing on topics of particular relevance to the research community at large. The Quest for Orthologs consortium is an open community that welcomes contributions from all researchers interested in orthology research and applications. Contact: [email protected]

    Toward community standards in the quest for orthologs

    Get PDF

    Translational research combining orthologous genes and human diseases with the OGOLOD dataset

    Full text link
    OGOLOD is a Linked Open Data dataset derived from different biomedical resources by an automated pipeline, using a tailored ontology as a scaffold. The key contribution of OGOLOD is that it links, in new RDF triples, genetic human diseases and orthologous genes, paving the way for a more efficient translational biomedical research exploiting the Linked Open Data cloud

    Big data and other challenges in the quest for orthologs

    Get PDF
    Given the rapid increase of species with a sequenced genome, the need to identify orthologous genes between them has emerged as a central bioinformatics task. Many different methods exist for orthology detection, which makes it difficult to decide which one to choose for a particular application. Here, we review the latest developments and issues in the orthology field, and summarize the most recent results reported at the third ‘Quest for Orthologs' meeting. We focus on community efforts such as the adoption of reference proteomes, standard file formats and benchmarking. Progress in these areas is good, and they are already beneficial to both orthology consumers and providers. However, a major current issue is that the massive increase in complete proteomes poses computational challenges to many of the ortholog database providers, as most orthology inference algorithms scale at least quadratically with the number of proteomes. The Quest for Orthologs consortium is an open community with a number of working groups that join efforts to enhance various aspects of orthology analysis, such as defining standard formats and datasets, documenting community resources and benchmarking. Availability and implementation: All such materials are available at http://questfororthologs.org. Contact: [email protected] or [email protected]

    Big data and other challenges in the quest for orthologs.

    Get PDF
    Given the rapid increase of species with a sequenced genome, the need to identify orthologous genes between them has emerged as a central bioinformatics task. Many different methods exist for orthology detection, which makes it difficult to decide which one to choose for a particular application. Here, we review the latest developments and issues in the orthology field, and summarize the most recent results reported at the third 'Quest for Orthologs' meeting. We focus on community efforts such as the adoption of reference proteomes, standard file formats and benchmarking. Progress in these areas is good, and they are already beneficial to both orthology consumers and providers. However, a major current issue is that the massive increase in complete proteomes poses computational challenges to many of the ortholog database providers, as most orthology inference algorithms scale at least quadratically with the number of proteomes. The Quest for Orthologs consortium is an open community with a number of working groups that join efforts to enhance various aspects of orthology analysis, such as defining standard formats and datasets, documenting community resources and benchmarking. AVAILABILITY AND IMPLEMENTATION: All such materials are available at http://questfororthologs.org. CONTACT: [email protected] or [email protected]

    The Quest for Orthologs orthology benchmark service in 2022

    Get PDF
    The Orthology Benchmark Service (https://orthology.benchmarkservice.org) is the gold standard for orthology inference evaluation, supported and maintained by the Quest for Orthologs consortium. It is an essential resource to compare existing and new methods of orthology inference (the bedrock for many comparative genomics and phylogenetic analysis) over a standard dataset and through common procedures. The Quest for Orthologs Consortium is dedicated to maintaining the resource up to date, through regular updates of the Reference Proteomes and increasingly accessible data through the OpenEBench platform. For this update, we have added a new benchmark based on curated orthology assertion from the Vertebrate Gene Nomenclature Committee, and provided an example meta-analysis of the public predictions present on the platform.European Molecular Biology Laboratory (EMBL) (core funds to D.J. and M.J.M.); National Institutes of Health [U24HG007822 to D.J. and M.J.M., 75N93019C00077 to D.S.R.]; National Human Genome Research Institute (NHGRI) [U24HG003345 to T.E.M.J, B.Y., E.A.B.]; JSPS KAKENHI [16H06279, 19H05688 to W.I.]; JST CREST [JPMJCR19S2 to W.I.]; MEXT [JPMXD1521474594 to W.I.]; Horizon 2020 [676559 to S.C.-G., 637765] (to D.M.E.), ELIXIR (to S.C.-G.); Wellcome Grant [208349/Z/17/Z to E.A.B.]; National Science Foundation (USA) [1917302 to P.D.T.]; Wellcome Trust [WT-218288, WT-212929 to D.S.R.]; Service and Infrastructure grant from the Swiss Institute of Bioinformatics, Swiss National Science Foundation [186397, 205085 to C.D.]. Funding for open access charge: Swiss National Science Foundation [205085].Peer Reviewed"Article signat per 31 autors/es: Yannis Nevers, Tamsin E M Jones, Dushyanth Jyothi, Bethan Yates, Meritxell Ferret, Laura Portell-Silva, Laia Codo, Salvatore Cosentino, Marina Marcet-Houben, Anna Vlasova, Laetitia Poidevin, Arnaud Kress, Mark Hickman, Emma Persson, Ivana Piližota, Cristina Guijarro-Clarke, the OpenEBench team the Quest for Orthologs Consortium , Wataru Iwasaki, Odile Lecompte, Erik Sonnhammer, David S Roos, Toni Gabaldón, David Thybert, Paul D Thomas, Yanhui Hu, David M Emms, Elspeth Bruford, Salvador Capella-Gutierrez, Maria J Martin, Christophe Dessimoz, Adrian Altenhoff"Postprint (published version

    Expansion of the Gene Ontology knowledgebase and resources

    Get PDF
    The Gene Ontology (GO) is a comprehensive resource of computable knowledge regarding the functions of genes and gene products. As such, it is extensively used by the biomedical research community for the analysis of -omics and related data. Our continued focus is on improving the quality and utility of the GO resources, and we welcome and encourage input from researchers in all areas of biology. In this update, we summarize the current contents of the GO knowledgebase, and present several new features and improvements that have been made to the ontology, the annotations and the tools. Among the highlights are 1) developments that facilitate access to, and application of, the GO knowledgebase, and 2) extensions to the resource as well as increasing support for descriptions of causal models of biological systems and network biology. To learn more, visit http://geneontology.org/

    The OMA orthology database in 2018: retrieving evolutionary relationships among all domains of life through richer web and programmatic interfaces.

    Get PDF
    The Orthologous Matrix (OMA) is a leading resource to relate genes across many species from all of life. In this update paper, we review the recent algorithmic improvements in the OMA pipeline, describe increases in species coverage (particularly in plants and early-branching eukaryotes) and introduce several new features in the OMA web browser. Notable improvements include: (i) a scalable, interactive viewer for hierarchical orthologous groups; (ii) protein domain annotations and domain-based links between orthologous groups; (iii) functionality to retrieve phylogenetic marker genes for a subset of species of interest; (iv) a new synteny dot plot viewer; and (v) an overhaul of the programmatic access (REST API and semantic web), which will facilitate incorporation of OMA analyses in computational pipelines and integration with other bioinformatic resources. OMA can be freely accessed at https://omabrowser.org
    corecore