5,573 research outputs found

    Analysis of Archived Residual Newborn Screening Blood Spots After Whole Genome Amplification

    Get PDF
    Deidentified newborn screening bloodspot samples (NBS) represent a valuable potential resource for genomic research if impediments to whole exome sequencing of NBS deoxyribonucleic acid (DNA), including the small amount of genomic DNA in NBS material, can be overcome. For instance, genomic analysis of NBS could be used to define allele frequencies of disease-associated variants in local populations, or to conduct prospective or retrospective studies relating genomic variation to disease emergence in pediatric populations over time. In this study, we compared the recovery of variant calls from exome sequences of amplified NBS genomic DNA to variant calls from exome sequencing of non-amplified NBS DNA from the same individuals. Results: Using a standard alignment-based Genome Analysis Toolkit (GATK), we find 62,000-76,000 additional variants in amplified samples. After application of a unique kmer enumeration and variant detection method (RUFUS), only 38,000-47,000 additional variants are observed in amplified gDNA. This result suggests that roughly half of the amplification-introduced variants identified using GATK may be the result of mapping errors and read misalignment. Conclusions: Our results show that it is possible to obtain informative, high-quality data from exome analysis of whole genome amplified NBS with the important caveat that different data generation and analysis methods can affect variant detection accuracy, and the concordance of variant calls in whole-genome amplified and non-amplified exomes.National Institute of Health P01HD067244, NS076465, R01ES021006Nutritional Science

    Knowledge Driven Approaches and Machine Learning Improve the Identification of Clinically Relevant Somatic Mutations in Cancer Genomics

    Get PDF
    For cancer genomics to fully expand its utility from research discovery to clinical adoption, somatic variant detection pipelines must be optimized and standardized to ensure identification of clinically relevant mutations and to reduce laborious and error-prone post-processing steps. To address the need for improved catalogues of clinically and biologically important somatic mutations, we developed DoCM, a Database of Curated Mutations in Cancer (http://docm.info), as described in Chapter 2. DoCM is an open source, openly licensed resource to enable the cancer research community to aggregate, store and track biologically and clinically important cancer variants. DoCM is currently comprised of 1,364 variants in 132 genes across 122 cancer subtypes, based on the curation of 876 publications. To demonstrate the utility of this resource, the mutations in DoCM were used to identify variants of established significance in cancer that were missed by standard variant discovery pipelines (Chapter 3). Sequencing data from 1,833 cases across four TCGA projects were reanalyzed and 1,228 putative variants that were missed in the original TCGA reports were identified. Validation sequencing data were produced from 93 of these cases to confirm the putative variant we detected with DoCM. Here, we demonstrated that at least one functionally important variant in DoCM was recovered in 41% of cases studied. A major bottleneck in the DoCM analysis in Chapter 3 was the filtering and manual review of somatic variants. Several steps in this post-processing phase of somatic variant calling have already been automated. However, false positive filtering and manual review of variant candidates remains as a major challenge, especially in high-throughput discovery projects or in clinical cancer diagnostics. In Chapter 4, an approach that systematized and standardized the post-processing of somatic variant calls using machine learning algorithms, trained on 41,000 manually reviewed variants from 20 cancer genome projects, is outlined. The approach accurately reproduced the manual review process on hold out test samples, and accurately predicted which variants would be confirmed by orthogonal validation sequencing data. When compared to traditional manual review, this approach increased identification of clinically actionable variants by 6.2%. These chapters outline studies that result in substantial improvements in the identification and interpretation of somatic variants, the use of which can standardize and streamline cancer genomics, enabling its use at high throughput as well as clinically

    The distribution and mutagenesis of short coding INDELs from 1,128 whole exomes

    Get PDF
    BACKGROUND: Identifying insertion/deletion polymorphisms (INDELs) with high confidence has been intrinsically challenging in short-read sequencing data. Here we report our approach for improving INDEL calling accuracy by using a machine learning algorithm to combine call sets generated with three independent methods, and by leveraging the strengths of each individual pipeline. Utilizing this approach, we generated a consensus exome INDEL call set from a large dataset generated by the 1000 Genomes Project (1000G), maximizing both the sensitivity and the specificity of the calls. RESULTS: This consensus exome INDEL call set features 7,210 INDELs, from 1,128 individuals across 13 populations included in the 1000 Genomes Phase 1 dataset, with a false discovery rate (FDR) of about 7.0%. CONCLUSIONS: In our study we further characterize the patterns and distributions of these exonic INDELs with respect to density, allele length, and site frequency spectrum, as well as the potential mutagenic mechanisms of coding INDELs in humans. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1333-7) contains supplementary material, which is available to authorized users

    UNMASC: Tumor-only variant calling with unmatched normal controls

    Get PDF
    Despite years of progress, mutation detection in cancer samples continues to require significant manual review as a final step. Expert review is particularly challenging in cases where tumors are sequenced without matched normal control DNA. Attempts have been made to call somatic point mutations without a matched normal sample by removing well-known germline variants, utilizing unmatched normal controls, and constructing decision rules to classify sequencing errors and private germline variants. With budgetary constraints related to computational and sequencing costs, finding the appropriate number of controls is a crucial step to identifying somatic variants. Our approach utilizes public databases for canonical somatic variants as well as germline variants and leverages information gathered about nearby positions in the normal controls. Drawing from our cohort of targeted capture panel sequencing of tumor and normal samples with varying tumortypes and demographics, these served as a benchmark for our tumor-only variant calling pipeline to observe the relationship between our ability to correctly classify variants against a number of unmatched normals. With our benchmarked samples, approximately ten normal controls were needed to maintain 94% sensitivity, 99% specificity and 76% positive predictive value, far outperforming comparable methods. Our approach, called UNMASC, also serves as a supplement to traditional tumor with matched normal variant calling workflows and can potentially extend to other concerns arising from analyzing next generation sequencing data

    Reducing INDEL calling errors in whole genome and exome sequencing data

    Get PDF
    BACKGROUND: INDELs, especially those disrupting protein-coding regions of the genome, have been strongly associated with human diseases. However, there are still many errors with INDEL variant calling, driven by library preparation, sequencing biases, and algorithm artifacts. METHODS: We characterized whole genome sequencing (WGS), whole exome sequencing (WES), and PCR-free sequencing data from the same samples to investigate the sources of INDEL errors. We also developed a classification scheme based on the coverage and composition to rank high and low quality INDEL calls. We performed a large-scale validation experiment on 600 loci, and find high-quality INDELs to have a substantially lower error rate than low-quality INDELs (7% vs. 51%). RESULTS: Simulation and experimental data show that assembly based callers are significantly more sensitive and robust for detecting large INDELs (>5 bp) than alignment based callers, consistent with published data. The concordance of INDEL detection between WGS and WES is low (53%), and WGS data uniquely identifies 10.8-fold more high-quality INDELs. The validation rate for WGS-specific INDELs is also much higher than that for WES-specific INDELs (84% vs. 57%), and WES misses many large INDELs. In addition, the concordance for INDEL detection between standard WGS and PCR-free sequencing is 71%, and standard WGS data uniquely identifies 6.3-fold more low-quality INDELs. Furthermore, accurate detection with Scalpel of heterozygous INDELs requires 1.2-fold higher coverage than that for homozygous INDELs. Lastly, homopolymer A/T INDELs are a major source of low-quality INDEL calls, and they are highly enriched in the WES data. CONCLUSIONS: Overall, we show that accuracy of INDEL detection with WGS is much greater than WES even in the targeted region. We calculated that 60X WGS depth of coverage from the HiSeq platform is needed to recover 95% of INDELs detected by Scalpel. While this is higher than current sequencing practice, the deeper coverage may save total project costs because of the greater accuracy and sensitivity. Finally, we investigate sources of INDEL errors (for example, capture deficiency, PCR amplification, homopolymers) with various data that will serve as a guideline to effectively reduce INDEL errors in genome sequencing
    corecore