181 research outputs found

    Migration from Teleoperation to Autonomy via Modular Sensor and Mobility Bricks

    Get PDF
    In this thesis, the teleoperated communications of a Remotec ANDROS robot have been reverse engineered. This research has used the information acquired through the reverse engineering process to enhance the teleoperation and add intelligence to the initially automated robot. The main contribution of this thesis is the implementation of the mobility brick paradigm, which enables autonomous operations, using the commercial teleoperated ANDROS platform. The brick paradigm is a generalized architecture for a modular approach to robotics. This architecture and the contribution of this thesis are a paradigm shift from the proprietary commercial models that exist today. The modular system of sensor bricks integrates the transformed mobility platform and defines it as a mobility brick. In the wall following application implemented in this work, the mobile robotic system acquires intelligence using the range sensor brick. This application illustrates a way to alleviate the burden on the human operator and delegate certain tasks to the robot. Wall following is one among several examples of giving a degree of autonomy to an essentially teleoperated robot through the Sensor Brick System. Indeed once the proprietary robot has been altered into a mobility brick; the possibilities for autonomy are numerous and vary with different sensor bricks. The autonomous system implemented is not a fixed-application robot but rather a non-specific autonomy capable platform. Meanwhile the native controller and the computer-interfaced teleoperation are still available when necessary. Rather than trading off by switching from teleoperation to autonomy, this system provides the flexibility to switch between the two at the operator’s command. The contributions of this thesis reside in the reverse engineering of the original robot, its upgrade to a computer-interfaced teleoperated system, the mobility brick paradigm and the addition of autonomy capabilities. The application of a robot autonomously following a wall is subsequently implemented, tested and analyzed in this work. The analysis provides the programmer with information on controlling the robot and launching the autonomous function. The results are conclusive and open up the possibilities for a variety of autonomous applications for mobility platforms using modular sensor bricks

    Intégration et évaluation de capacités interactives d'un robot humanoïde

    Get PDF
    Le domaine de l'Interaction Humain-Robot (HRI) est en pleine expansion. En effet, de plus en plus de plateformes robotiques sont mises en oeuvre pour faire évoluer ce domaine. Sur ces plateformes, toujours plus de modalités d'interaction sont mises en place telles que les mouvements corporels, la reconnaissance de gestes ou d'objets, la reconnaissance et la synthèse vocale ou encore la mobilité, pour pouvoir effectuer l'interaction la plus complète et la plus naturelle pour l'humain. Mais ceci amène aussi une complexité croissante de l'intégration de ces modalités sur une seule et même plateforme. Aussi, le domaine HRI étant à ses débuts, la méthodologie expérimentale des travaux se limite le plus souvent à des preuves de concept éprouvées en laboratoire ou en milieux ouverts non contrôlés. Il se trouve que peu de chercheurs présentent une démarche structurée et rigoureuse pour l'évaluation expérimentale d'interaction humain-robot en milieux ouverts, et il en résulte des recherches de types exploratoires qui examinent principalement la complexité technologique des modalités interactives à mettre en oeuvre, et non l'impact de ces modalités sur la qualité des interactions. Le but de l'étude présentée dans ce document est d'étudier l'intégration de plusieurs modalités interactives sur un robot mobile humanoïde telles que la parole, les gestes et la mobilité sur la qualité des interactions humain-robot. Plus spécifiquement, le contexte de l'étude consiste à examiner l'impact de modalités interactives sur la capacité du robot à attirer l'attention d'une personne et à engager une interaction avec elle. Le scénario expérimental consiste à permettre au robot, à partir de la parole, d'expressions faciales, de mouvement de la tête, de gestes avec son bras et de sa mobilité, de demander de l'assistance à une personne à proximité de lui remettre un objet se trouvant au sol. L'hypothèse sous-jacente est que l'intégration de l'ensemble de ces modalités devrait améliorer la capacité du robot à engager des personnes à interagir avec lui. Des expérimentations ont été faites en milieu contrôlé et non-contrôlé selon deux protocoles expérimentaux : une étude des modalités à l'intérieur d'une population, et une étude de variation entre individus. D'une manière générale, il en ressort que l'ajout de modalités améliore la qualité de l'engagement de l'interaction par le robot, mais qu'il faut porter une attention particulière à l'approche de la personne par le robot, principalement pour les personnes non familières avec ce dernier. De plus, les observations indiquent qu'il est plus facile d'obtenir des résultats significatifs en environnement contrôlé, elles permettent d'identifier des pistes d'amélioration pour éventuellement arriver à en obtenir en milieu non-contrôlé. Enfin, ce premier projet d'intégration et d'évaluation de capacités interactives d'un robot mobile servira à alimenter une prochaine itération avec un robot plus sophistiqué présentement en conception

    Conception d’un mécanisme intégré d’attention sélective dans une architecture comportementale pour robots autonomes

    Get PDF
    Le vieillissement de la population à travers le monde nous amène à considérer sérieusement l'intégration dans notre quotidien de robots de service afin d'alléger les besoins pour la prestation de soins. Or, il n'existe pas présentement de robots de service suffisamment avancés pour être utiles en tant que véritables assistants à des personnes en perte d'autonomie. Un des problèmes freinant le développement de tels robots en est un d'intégration logicielle. En effet, il est difficile d'intégrer les multiples capacités de perception et d'action nécessaires à interagir de manière naturelle et adéquate avec une personne en milieu réel, les limites des ressources de calculs disponibles sur une plateforme robotique étant rapidement atteintes. Même si le cerveau humain a des capacités supérieures à un ordinateur, lui aussi a des limites sur ses capacités de traitement de l'information. Pour faire face à ces limites, l'humain gère ses capacités cognitives avec l'aide de l'attention sélective. L'attention sélective lui permet par exemple d'ignorer certains stimuli pour concentrer ses ressources sur ceux utiles à sa tâche. Puisque les robots pourraient grandement bénéficier d'un tel mécanisme, l'objectif de la thèse est de développer une architecture de contrôle intégrant un mécanisme d'attention sélective afin de diminuer la charge de calcul demandée par les différents modules de traitement du robot. L'architecture de contrôle utilisé est basée sur l'approche comportementale, et porte le nom HBBA, pour Hybrid Behavior-Based Architecture. Pour répondre à cet objectif, le robot humanoïde nommé IRL-1 a été conçu pour permettre l'intégration de multiples capacités de perception et d'action sur une seule et même plateforme, afin de s'en servir comme plateforme expérimentale pouvant bénéficier de mécanismes d'attention sélective. Les capacités implémentées permettent d'interagir avec IRL-1 selon différentes modalités. IRL-1 peut être guidé physiquement en percevant les forces externes par le bias d'actionneurs élastiques utilisés dans la direction de sa plateforme omnidirectionnelle. La vision, le mouvement et l'audition ont été intégrés dans une interface de téléprésence augmentée. De plus, l'influence des délais de réaction à des sons dans l'environnement a pu être examinée. Cette implémentation a permis de valider l'usage de HBBA comme base de travail pour la prise de décision du robot, ainsi que d'explorer les limites en termes de capacités de traitement des modules sur le robot. Ensuite, un mécanisme d'attention sélective a été développé au sein de HBBA. Le mécanisme en question intègre l'activation de modules de traitement avec le filtrage perceptuel, soit la capacité de moduler la quantité de stimuli utilisés par les modules de traitement afin d'adapter le traitement aux ressources de calculs disponibles. Les résultats obtenus démontrent les bénéfices qu'apportent un tel mécanisme afin de permettre au robot d'optimiser l'usage de ses ressources de calculs afin de satisfaire ses buts. De ces travaux résulte une base sur laquelle il est maintenant possible de poursuivre l'intégration de capacités encore plus avancées et ainsi progresser efficacement vers la conception de robots domestiques pouvant nous assister dans notre quotidien

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Locomotion system for ground mobile robots in uneven and unstructured environments

    Get PDF
    One of the technology domains with the greatest growth rates nowadays is service robots. The extensive use of ground mobile robots in environments that are unstructured or structured for humans is a promising challenge for the coming years, even though Automated Guided Vehicles (AGV) moving on flat and compact grounds are already commercially available and widely utilized to move components and products inside indoor industrial buildings. Agriculture, planetary exploration, military operations, demining, intervention in case of terrorist attacks, surveillance, and reconnaissance in hazardous conditions are important application domains. Due to the fact that it integrates the disciplines of locomotion, vision, cognition, and navigation, the design of a ground mobile robot is extremely interdisciplinary. In terms of mechanics, ground mobile robots, with the exception of those designed for particular surroundings and surfaces (such as slithering or sticky robots), can move on wheels (W), legs (L), tracks (T), or hybrids of these concepts (LW, LT, WT, LWT). In terms of maximum speed, obstacle crossing ability, step/stair climbing ability, slope climbing ability, walking capability on soft terrain, walking capability on uneven terrain, energy efficiency, mechanical complexity, control complexity, and technology readiness, a systematic comparison of these locomotion systems is provided in [1]. Based on the above-mentioned classification, in this thesis, we first introduce a small-scale hybrid locomotion robot for surveillance and inspection, WheTLHLoc, with two tracks, two revolving legs, two active wheels, and two passive omni wheels. The robot can move in several different ways, including using wheels on the flat, compact ground,[1] tracks on soft, yielding terrain, and a combination of tracks, legs, and wheels to navigate obstacles. In particular, static stability and non-slipping characteristics are considered while analyzing the process of climbing steps and stairs. The experimental test on the first prototype has proven the planned climbing maneuver’s efficacy and the WheTLHLoc robot's operational flexibility. Later we present another development of WheTLHLoc and introduce WheTLHLoc 2.0 with newly designed legs, enabling the robot to deal with bigger obstacles. Subsequently, a single-track bio-inspired ground mobile robot's conceptual and embodiment designs are presented. This robot is called SnakeTrack. It is designed for surveillance and inspection activities in unstructured environments with constrained areas. The vertebral column has two end modules and a variable number of vertebrae linked by compliant joints, and the surrounding track is its essential component. Four motors drive the robot: two control the track motion and two regulate the lateral flexion of the vertebral column for steering. The compliant joints enable limited passive torsion and retroflection of the vertebral column, which the robot can use to adapt to uneven terrain and increase traction. Eventually, the new version of SnakeTrack, called 'Porcospino', is introduced with the aim of allowing the robot to move in a wider variety of terrains. The novelty of this thesis lies in the development and presentation of three novel designs of small-scale mobile robots for surveillance and inspection in unstructured environments, and they employ hybrid locomotion systems that allow them to traverse a variety of terrains, including soft, yielding terrain and high obstacles. This thesis contributes to the field of mobile robotics by introducing new design concepts for hybrid locomotion systems that enable robots to navigate challenging environments. The robots presented in this thesis employ modular designs that allow their lengths to be adapted to suit specific tasks, and they are capable of restoring their correct position after falling over, making them highly adaptable and versatile. Furthermore, this thesis presents a detailed analysis of the robots' capabilities, including their step-climbing and motion planning abilities. In this thesis we also discuss possible refinements for the robots' designs to improve their performance and reliability. Overall, this thesis's contributions lie in the design and development of innovative mobile robots that address the challenges of surveillance and inspection in unstructured environments, and the analysis and evaluation of these robots' capabilities. The research presented in this thesis provides a foundation for further work in this field, and it may be of interest to researchers and practitioners in the areas of robotics, automation, and inspection. As a general note, the first robot, WheTLHLoc, is a hybrid locomotion robot capable of combining tracked locomotion on soft terrains, wheeled locomotion on flat and compact grounds, and high obstacle crossing capability. The second robot, SnakeTrack, is a small-size mono-track robot with a modular structure composed of a vertebral column and a single peripherical track revolving around it. The third robot, Porcospino, is an evolution of SnakeTrack and includes flexible spines on the track modules for improved traction on uneven but firm terrains, and refinements of the shape of the track guidance system. This thesis provides detailed descriptions of the design and prototyping of these robots and presents analytical and experimental results to verify their capabilities

    Architecture de contrôle d'un robot de téléprésence et d'assistance aux soins à domicile

    Get PDF
    La population vieillissante provoque une croissance des coûts pour les soins hospitaliers. Pour éviter que ces coûts deviennent trop importants, des robots de téléprésence et d’assistance aux soins et aux activités quotidiennes sont envisageables afin de maintenir l’autonomie des personnes âgées à leur domicile. Cependant, les robots actuels possèdent individuellement des fonctionnalités intéressantes, mais il serait bénéfique de pouvoir réunir leurs capacités. Une telle intégration est possible par l’utilisation d’une architecture décisionnelle permettant de jumeler des capacités de navigation, de suivi de la voix et d’acquisition d’informations afin d’assister l’opérateur à distance, voir même s’y substituer. Pour ce projet, l’architecture de contrôle HBBA (Hybrid Behavior-Based Architecture) sert de pilier pour unifier les bibliothèques requises, RTAB-Map (Real-Time Appearance-Based Mapping) et ODAS (Open embeddeD Audition System), pour réaliser cette intégration. RTAB-Map est une bibliothèque permettant la localisation et la cartographie simultanée selon différentes configurations de capteurs tout en respectant les contraintes de traitement en ligne. ODAS est une bibliothèque permettant la localisation, le suivi et la séparation de sources sonores en milieux réels. Les objectifs sont d’évaluer ces capacités en environnement réel en déployant la plateforme robotique dans différents domiciles, et d’évaluer le potentiel d’une telle intégration en réalisant un scénario autonome d’assistance à la prise de mesure de signes vitaux. La plateforme robotique Beam+ est utilisée pour réaliser cette intégration. La plateforme est bonifiée par l’ajout d’une caméra RBG-D, d’une matrice de huit microphones, d’un ordinateur et de batteries supplémentaires. L’implémentation résultante, nommée SAM, a été évaluée dans 10 domiciles pour caractériser la navigation et le suivi de conversation. Les résultats de la navigation suggèrent que les capacités de navigation fonctionnent selon certaines contraintes propres au positionement des capteurs et des conditions environnementales, impliquant la nécessité d’intervention de l’opérateur pour compenser. La modalité de suivi de la voix fonctionne bien dans des environnements calmes, mais des améliorations sont requises en milieu bruyant. Incidemment, la réalisation d’un scénario d’assistance complètement autonome est fonction des performances de la combinaison de ces fonctionnalités, ce qui rend difficile d’envisager le retrait complet d’un opérateur dans la boucle de décision. L’intégration des modalités avec HBBA s’avère possible et concluante, et ouvre la porte à la réutilisabilité de l’implémentation sur d’autres plateformes robotiques qui pourraient venir compenser face aux lacunes observées sur la mise en œuvre avec la plateforme Beam+

    Human-friendly robotic manipulators: safety and performance issues in controller design

    Get PDF
    Recent advances in robotics have spurred its adoption into new application areas such as medical, rescue, transportation, logistics, personal care and entertainment. In the personal care domain, robots are expected to operate in human-present environments and provide non-critical assistance. Successful and flourishing deployment of such robots present different opportunities as well as challenges. Under a national research project, Bobbie, this dissertation analyzes challenges associated with these robots and proposes solutions for identified problems. The thesis begins by highlighting the important safety concern and presenting a comprehensive overview of safety issues in a typical domestic robot system. By using functional safety concept, the overall safety of the complex robotic system was analyzed through subsystem level safety issues. Safety regions in the world model of the perception subsystem, dependable understanding of the unstructured environment via fusion of sensory subsystems, lightweight and compliant design of mechanical components, passivity based control system and quantitative metrics used to assert safety are some important points discussed in the safety review. The main research focus of this work is on controller design of robotic manipulators against two conflicting requirements: motion performance and safety. Human-friendly manipulators used on domestic robots exhibit a lightweight design and demand a stable operation with a compliant behavior injected via a passivity based impedance controller. Effective motion based manipulation using such a controller requires a highly stiff behavior while important safety requirements are achieved with compliant behaviors. On the basis of this intuitive observation, this research identifies suitable metrics to identify the appropriate impedance for a given performance and safety requirement. This thesis also introduces a domestic robot design that adopts a modular design approach to minimize complexity, cost and development time. On the basis of functional modularity concept where each module has a unique functional contribution in the system, the robot “Bobbie-UT‿ is built as an interconnection of interchangeable mobile platform, torso, robotic arm and humanoid head components. Implementation of necessary functional and safety requirements, design of interfaces and development of suitable software architecture are also discussed with the design

    Planning and Control Strategies for Motion and Interaction of the Humanoid Robot COMAN+

    Get PDF
    Despite the majority of robotic platforms are still confined in controlled environments such as factories, thanks to the ever-increasing level of autonomy and the progress on human-robot interaction, robots are starting to be employed for different operations, expanding their focus from uniquely industrial to more diversified scenarios. Humanoid research seeks to obtain the versatility and dexterity of robots capable of mimicking human motion in any environment. With the aim of operating side-to-side with humans, they should be able to carry out complex tasks without posing a threat during operations. In this regard, locomotion, physical interaction with the environment and safety are three essential skills to develop for a biped. Concerning the higher behavioural level of a humanoid, this thesis addresses both ad-hoc movements generated for specific physical interaction tasks and cyclic movements for locomotion. While belonging to the same category and sharing some of the theoretical obstacles, these actions require different approaches: a general high-level task is composed of specific movements that depend on the environment and the nature of the task itself, while regular locomotion involves the generation of periodic trajectories of the limbs. Separate planning and control architectures targeting these aspects of biped motion are designed and developed both from a theoretical and a practical standpoint, demonstrating their efficacy on the new humanoid robot COMAN+, built at Istituto Italiano di Tecnologia. The problem of interaction has been tackled by mimicking the intrinsic elasticity of human muscles, integrating active compliant controllers. However, while state-of-the-art robots may be endowed with compliant architectures, not many can withstand potential system failures that could compromise the safety of a human interacting with the robot. This thesis proposes an implementation of such low-level controller that guarantees a fail-safe behaviour, removing the threat that a humanoid robot could pose if a system failure occurred

    Classifying Service Robots for Policy

    Get PDF

    Legged Robots for Object Manipulation: A Review

    Get PDF
    Legged robots can have a unique role in manipulating objects in dynamic, human-centric, or otherwise inaccessible environments. Although most legged robotics research to date typically focuses on traversing these challenging environments, many legged platform demonstrations have also included "moving an object" as a way of doing tangible work. Legged robots can be designed to manipulate a particular type of object (e.g., a cardboard box, a soccer ball, or a larger piece of furniture), by themselves or collaboratively. The objective of this review is to collect and learn from these examples, to both organize the work done so far in the community and highlight interesting open avenues for future work. This review categorizes existing works into four main manipulation methods: object interactions without grasping, manipulation with walking legs, dedicated non-locomotive arms, and legged teams. Each method has different design and autonomy features, which are illustrated by available examples in the literature. Based on a few simplifying assumptions, we further provide quantitative comparisons for the range of possible relative sizes of the manipulated object with respect to the robot. Taken together, these examples suggest new directions for research in legged robot manipulation, such as multifunctional limbs, terrain modeling, or learning-based control, to support a number of new deployments in challenging indoor/outdoor scenarios in warehouses/construction sites, preserved natural areas, and especially for home robotics.Comment: Preprint of the paper submitted to Frontiers in Mechanical Engineerin
    • …
    corecore