290 research outputs found

    End-User Service Computing: Spreadsheets as a Service Composition Tool

    Get PDF
    In this paper, we show how spreadsheets, an end-user development paradigm proven to be highly productive and simple to learn and use, can be used for complex service compositions. We identify the requirements for spreadsheet-based service composition, and present our framework that implements these requirements. Our framework enables spreadsheets to send requests and retrieve results from various local and remote services. We show how our tools support different composition patterns, and how the style of declarative dependencies of spreadsheets can facilitate service composition. We also discuss novel issues identified by using the framework in several projects and education

    Domain-specific languages

    Get PDF
    Domain-Specific Languages are used in software engineering in order to enhance quality, flexibility, and timely delivery of software systems, by taking advantage of specific properties of a particular application domain. This survey covers terminology, risks and benefits, examples, design methodologies, and implementation techniques of domain-specific languages as used for the construction and maintenance of software systems. Moreover, it covers an annotated selection of 75 key publications in the area of domain-specific languages

    Fifty years of the Psychology of Programming

    Get PDF
    This paper reflects on the evolution (past, present and future) of the ‘psychology of programming' over the 50 year period of this anniversary issue. The International Journal of Human-Computer Studies (IJHCS) has been a key venue for much seminal work in this field, including its first foundations, and we review the changing research concerns seen in publications over these five decades. We relate this thematic evolution to research taking place over the same period within more specialist communities, especially the Psychology of Programming Interest Group (PPIG), the Empirical Studies of Programming series (ESP), and the ongoing community in Visual Languages and Human-Centric Computing (VL/HCC). Many other communities have interacted with psychology of programming, both influenced by research published within the specialist groups, and in turn influencing research priorities. We end with an overview of the core theories that have been developed over this period, as an introductory resource for new researchers, and also with the authors’ own analysis of key priorities for future research

    Physical Plan Instrumentation in Databases: Mechanisms and Applications

    Get PDF
    Database management systems (DBMSs) are designed with the goal set to compile SQL queries to physical plans that, when executed, provide results to the SQL queries. Building on this functionality, an ever-increasing number of application domains (e.g., provenance management, online query optimization, physical database design, interactive data profiling, monitoring, and interactive data visualization) seek to operate on how queries are executed by the DBMS for a wide variety of purposes ranging from debugging and data explanation to optimization and monitoring. Unfortunately, DBMSs provide little, if any, support to facilitate the development of this class of important application domains. The effect is such that database application developers and database system architects either rewrite the database internals in ad-hoc ways; work around the SQL interface, if possible, with inevitable performance penalties; or even build new databases from scratch only to express and optimize their domain-specific application logic over how queries are executed. To address this problem in a principled manner in this dissertation, we introduce a prototype DBMS, namely, Smoke, that exposes instrumentation mechanisms in the form of a framework to allow external applications to manipulate physical plans. Intuitively, a physical plan is the underlying representation that DBMSs use to encode how a SQL query will be executed, and providing instrumentation mechanisms at this representation level allows applications to express and optimize their logic on how queries are executed. Having such an instrumentation-enabled DBMS in-place, we then consider how to express and optimize applications that rely their logic on how queries are executed. To best demonstrate the expressive and optimization power of instrumentation-enabled DBMSs, we express and optimize applications across several important domains including provenance management, interactive data visualization, interactive data profiling, physical database design, online query optimization, and query discovery. Expressivity-wise, we show that Smoke can express known techniques, introduce novel semantics on known techniques, and introduce new techniques across domains. Performance-wise, we show case-by-case that Smoke is on par with or up-to several orders of magnitudes faster than state-of-the-art imperative and declarative implementations of important applications across domains. As such, we believe our contributions provide evidence and form the basis towards a class of instrumentation-enabled DBMSs with the goal set to express and optimize applications across important domains with core logic over how queries are executed by DBMSs
    • …
    corecore