18,493 research outputs found

    Affordances and Safe Design of Assistance Wearable Virtual Environment of Gesture

    Get PDF
    Safety and reliability are the main issues for designing assistance wearable virtual environment of technical gesture in aerospace, or health application domains. That needs the integration in the same isomorphic engineering framework of human requirements, systems requirements and the rationale of their relation to the natural and artifactual environment.To explore coupling integration and design functional organization of support technical gesture systems, firstly ecological psychologyprovides usa heuristicconcept: the affordance. On the other hand mathematical theory of integrative physiology provides us scientific concepts: the stabilizing auto-association principle and functional interaction.After demonstrating the epistemological consistence of these concepts, we define an isomorphic framework to describe and model human systems integration dedicated to human in-the-loop system engineering.We present an experimental approach of safe design of assistance wearable virtual environment of gesture based in laboratory and parabolic flights. On the results, we discuss the relevance of our conceptual approach and the applications to future assistance of gesture wearable systems engineering

    Systems, interactions and macrotheory

    Get PDF
    A significant proportion of early HCI research was guided by one very clear vision: that the existing theory base in psychology and cognitive science could be developed to yield engineering tools for use in the interdisciplinary context of HCI design. While interface technologies and heuristic methods for behavioral evaluation have rapidly advanced in both capability and breadth of application, progress toward deeper theory has been modest, and some now believe it to be unnecessary. A case is presented for developing new forms of theory, based around generic “systems of interactors.” An overlapping, layered structure of macro- and microtheories could then serve an explanatory role, and could also bind together contributions from the different disciplines. Novel routes to formalizing and applying such theories provide a host of interesting and tractable problems for future basic research in HCI

    An information assistant system for the prevention of tunnel vision in crisis management

    Get PDF
    In the crisis management environment, tunnel vision is a set of bias in decision makers’ cognitive process which often leads to incorrect understanding of the real crisis situation, biased perception of information, and improper decisions. The tunnel vision phenomenon is a consequence of both the challenges in the task and the natural limitation in a human being’s cognitive process. An information assistant system is proposed with the purpose of preventing tunnel vision. The system serves as a platform for monitoring the on-going crisis event. All information goes through the system before arrives at the user. The system enhances the data quality, reduces the data quantity and presents the crisis information in a manner that prevents or repairs the user’s cognitive overload. While working with such a system, the users (crisis managers) are expected to be more likely to stay aware of the actual situation, stay open minded to possibilities, and make proper decisions

    Fourteenth Biennial Status Report: MĂ€rz 2017 - February 2019

    No full text

    Symbol Emergence in Robotics: A Survey

    Full text link
    Humans can learn the use of language through physical interaction with their environment and semiotic communication with other people. It is very important to obtain a computational understanding of how humans can form a symbol system and obtain semiotic skills through their autonomous mental development. Recently, many studies have been conducted on the construction of robotic systems and machine-learning methods that can learn the use of language through embodied multimodal interaction with their environment and other systems. Understanding human social interactions and developing a robot that can smoothly communicate with human users in the long term, requires an understanding of the dynamics of symbol systems and is crucially important. The embodied cognition and social interaction of participants gradually change a symbol system in a constructive manner. In this paper, we introduce a field of research called symbol emergence in robotics (SER). SER is a constructive approach towards an emergent symbol system. The emergent symbol system is socially self-organized through both semiotic communications and physical interactions with autonomous cognitive developmental agents, i.e., humans and developmental robots. Specifically, we describe some state-of-art research topics concerning SER, e.g., multimodal categorization, word discovery, and a double articulation analysis, that enable a robot to obtain words and their embodied meanings from raw sensory--motor information, including visual information, haptic information, auditory information, and acoustic speech signals, in a totally unsupervised manner. Finally, we suggest future directions of research in SER.Comment: submitted to Advanced Robotic

    Affective iconic words benefit from additional sound–meaning integration in the left amygdala

    Get PDF
    Recent studies have shown that a similarity between sound and meaning of a word (i.e., iconicity) can help more readily access the meaning of that word, but the neural mechanisms underlying this beneficial role of iconicity in semantic processing remain largely unknown. In an fMRI study, we focused on the affective domain and examined whether affective iconic words (e.g., high arousal in both sound and meaning) activate additional brain regions that integrate emotional information from different domains (i.e., sound and meaning). In line with our hypothesis, affective iconic words, compared to their non‐iconic counterparts, elicited additional BOLD responses in the left amygdala known for its role in multimodal representation of emotions. Functional connectivity analyses revealed that the observed amygdalar activity was modulated by an interaction of iconic condition and activations in two hubs representative for processing sound (left superior temporal gyrus) and meaning (left inferior frontal gyrus) of words. These results provide a neural explanation for the facilitative role of iconicity in language processing and indicate that language users are sensitive to the interaction between sound and meaning aspect of words, suggesting the existence of iconicity as a general property of human language

    Towards automatic generation of multimodal answers to medical questions: a cognitive engineering approach

    Get PDF
    This paper describes a production experiment carried out to determine which modalities people choose to answer different types of questions. In this experiment participants had to create (multimodal) presentations of answers to general medical questions. The collected answer presentations were coded on types of manipulations (typographic, spatial, graphical), presence of visual media (i.e., photos, graphics, and animations), functions and position of these visual media. The results of a first analysis indicated that participants presented the information in a multimodal way. Moreover, significant differences were found in the information presentation of different answer and question types

    Temporal Aspects of CARE-based Multimodal Fusion: From a Fusion Mechanism to Composition Components and WoZ Components

    Get PDF
    International audienceThe CARE properties (Complementarity, Assignment, Redundancy and Equivalence) define various forms that multimodal input interaction can take. While Equivalence and Assignment express the availability and respective absence of choice between multiple input modalities for performing a given task, Complementarity and Redundancy describe relationships between modalities and require fusion mechanisms. In this paper we present a summary of the works we have carried using the CARE properties for conceiving and implementing multimodal interaction, as well as a new approach using WoZ components. Firstly, we present different technical solutions for implementing the Complementarity and Redundancy of modalities with a focus on the temporal aspects of the fusion. Starting from a monolithic fusion mechanism, we then explain our component-based approach and the composition components (i.e., Redundancy and Complementarity components). As a new contribution for exploring solutions before implementing an adequate fusion mechanism as well as for tuning the temporal aspects of the performed fusion, we introduce Wizard of Oz (WoZ) fusion components. We illustrate the composition components as well as the implemented tools exploiting them using several multimodal systems including a multimodal slide viewer and a multimodal map navigator
    • 

    corecore