1,724 research outputs found

    INbreast: Toward a Full-field Digital Mammographic Database

    Get PDF
    Rationale and Objectives Computer-aided detection and diagnosis (CAD) systems have been developed in the past two decades to assist radiologists in the detection and diagnosis of lesions seen on breast imaging exams, thus providing a second opinion. Mammographic databases play an important role in the development of algorithms aiming at the detection and diagnosis of mammary lesions. However, available databases often do not take into consideration all the requirements needed for research and study purposes. This article aims to present and detail a new mammographic database. Materials and Methods Images were acquired at a breast center located in a university hospital (Centro Hospitalar de S. João [CHSJ], Breast Centre, Porto) with the permission of the Portuguese National Committee of Data Protection and Hospital's Ethics Committee. MammoNovation Siemens full-field digital mammography, with a solid-state detector of amorphous selenium was used. Results The new database—INbreast—has a total of 115 cases (410 images) from which 90 cases are from women with both breasts affected (four images per case) and 25 cases are from mastectomy patients (two images per case). Several types of lesions (masses, calcifications, asymmetries, and distortions) were included. Accurate contours made by specialists are also provided in XML format. Conclusion The strengths of the actually presented database—INbreast—relies on the fact that it was built with full-field digital mammograms (in opposition to digitized mammograms), it presents a wide variability of cases, and is made publicly available together with precise annotations. We believe that this database can be a reference for future works centered or related to breast cancer imaging

    Presenting a simplified assistant tool for breast cancer diagnosis in mammography to radiologists

    Get PDF
    This paper proposes a method to simplify a computational model from logistic regression for clinical use without computer. The model was built using human interpreted featrues including some BI-RADS standardized features for diagnosing the malignant masses. It was compared with the diagnosis using only assessment categorization from BI-RADS. The research aims at assisting radiologists to diagnose the malignancy of breast cancer in a way without using automated computer aided diagnosis system

    Computer-aided Diagnosis in Breast Ultrasound

    Get PDF
    Cancer remains a leading cause of death in Taiwan, and the prevalence of breast cancer has increased in recent years. The early detection and diagnosis of breast cancer is the key to ensuring prompt treatment and a reduced death rate. Mammography and ultrasound (US) are the main imaging techniques used in the detection of breast cancer. The heterogeneity of breast cancers leads to an overlap in benign and malignant ultrasonography images, and US examinations are also operator dependent. Recently, computer-aided diagnosis (CAD) has become a major research topic in medical imaging and diagnosis. Technical advances such as tissue harmonic imaging, compound imaging, split screen imaging and extended field-of-view imaging, Doppler US, the use of intravenous contrast agents, elastography, and CAD systems have expanded the clinical application of breast US. Breast US CAD can be an efficient computerized model to provide a second opinion and avoid interobserver variation. Various breast US CAD systems have been developed using techniques which combine image texture extraction and a decision-making algorithm. However, the textural analysis is system dependent and can only be performed well using one specific US system. Recently, several researchers have demonstrated the use of such CAD systems with various US machines mainly for preprocessing techniques designed to homogenize textural features between systems. Morphology-based CAD systems used for the diagnosis of solid breast tumors have the advantage of being nearly independent of either the settings of US systems or different US machines. Future research on CAD systems should include pathologically specific tissue-related and hormonerelated conjecture, which could be applied to picture archiving and communication systems or teleradiology

    Deep-Learning-Based Computer- Aided Systems for Breast Cancer Imaging: A Critical Review

    Full text link
    [EN] This paper provides a critical review of the literature on deep learning applications in breast tumor diagnosis using ultrasound and mammography images. It also summarizes recent advances in computer-aided diagnosis/detection (CAD) systems, which make use of new deep learning methods to automatically recognize breast images and improve the accuracy of diagnoses made by radiologists. This review is based upon published literature in the past decade (January 2010-January 2020), where we obtained around 250 research articles, and after an eligibility process, 59 articles were presented in more detail. The main findings in the classification process revealed that new DL-CAD methods are useful and effective screening tools for breast cancer, thus reducing the need for manual feature extraction. The breast tumor research community can utilize this survey as a basis for their current and future studies.This project has been co-financed by the Spanish Government Grant PID2019-107790RB-C22, "Software development for a continuous PET crystal systems applied to breast cancer".Jiménez-Gaona, Y.; Rodríguez Álvarez, MJ.; Lakshminarayanan, V. (2020). Deep-Learning-Based Computer- Aided Systems for Breast Cancer Imaging: A Critical Review. Applied Sciences. 10(22):1-29. https://doi.org/10.3390/app10228298S1291022Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61(2), 69-90. doi:10.3322/caac.20107Gao, F., Chia, K.-S., Ng, F.-C., Ng, E.-H., & Machin, D. (2002). Interval cancers following breast cancer screening in Singaporean women. International Journal of Cancer, 101(5), 475-479. doi:10.1002/ijc.10636Munir, K., Elahi, H., Ayub, A., Frezza, F., & Rizzi, A. (2019). Cancer Diagnosis Using Deep Learning: A Bibliographic Review. Cancers, 11(9), 1235. doi:10.3390/cancers11091235Nahid, A.-A., & Kong, Y. (2017). Involvement of Machine Learning for Breast Cancer Image Classification: A Survey. Computational and Mathematical Methods in Medicine, 2017, 1-29. doi:10.1155/2017/3781951Ramadan, S. Z. (2020). Methods Used in Computer-Aided Diagnosis for Breast Cancer Detection Using Mammograms: A Review. Journal of Healthcare Engineering, 2020, 1-21. doi:10.1155/2020/9162464CHAN, H.-P., DOI, K., VYBRONY, C. J., SCHMIDT, R. A., METZ, C. E., LAM, K. L., … MACMAHON, H. (1990). Improvement in Radiologists?? Detection of Clustered Microcalcifications on Mammograms. Investigative Radiology, 25(10), 1102-1110. doi:10.1097/00004424-199010000-00006Olsen, O., & Gøtzsche, P. C. (2001). Cochrane review on screening for breast cancer with mammography. The Lancet, 358(9290), 1340-1342. doi:10.1016/s0140-6736(01)06449-2Mann, R. M., Kuhl, C. K., Kinkel, K., & Boetes, C. (2008). Breast MRI: guidelines from the European Society of Breast Imaging. European Radiology, 18(7), 1307-1318. doi:10.1007/s00330-008-0863-7Jalalian, A., Mashohor, S. B. T., Mahmud, H. R., Saripan, M. I. B., Ramli, A. R. B., & Karasfi, B. (2013). Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review. Clinical Imaging, 37(3), 420-426. doi:10.1016/j.clinimag.2012.09.024Sarno, A., Mettivier, G., & Russo, P. (2015). Dedicated breast computed tomography: Basic aspects. Medical Physics, 42(6Part1), 2786-2804. doi:10.1118/1.4919441Njor, S., Nyström, L., Moss, S., Paci, E., Broeders, M., Segnan, N., & Lynge, E. (2012). Breast Cancer Mortality in Mammographic Screening in Europe: A Review of Incidence-Based Mortality Studies. Journal of Medical Screening, 19(1_suppl), 33-41. doi:10.1258/jms.2012.012080Morrell, S., Taylor, R., Roder, D., & Dobson, A. (2012). Mammography screening and breast cancer mortality in Australia: an aggregate cohort study. Journal of Medical Screening, 19(1), 26-34. doi:10.1258/jms.2012.011127Marmot, M. G., Altman, D. G., Cameron, D. A., Dewar, J. A., Thompson, S. G., & Wilcox, M. (2013). The benefits and harms of breast cancer screening: an independent review. British Journal of Cancer, 108(11), 2205-2240. doi:10.1038/bjc.2013.177Pisano, E. D., Gatsonis, C., Hendrick, E., Yaffe, M., Baum, J. K., Acharyya, S., … Rebner, M. (2005). Diagnostic Performance of Digital versus Film Mammography for Breast-Cancer Screening. New England Journal of Medicine, 353(17), 1773-1783. doi:10.1056/nejmoa052911Carney, P. A., Miglioretti, D. L., Yankaskas, B. C., Kerlikowske, K., Rosenberg, R., Rutter, C. M., … Ballard-Barbash, R. (2003). Individual and Combined Effects of Age, Breast Density, and Hormone Replacement Therapy Use on the Accuracy of Screening Mammography. Annals of Internal Medicine, 138(3), 168. doi:10.7326/0003-4819-138-3-200302040-00008Woodard, D. B., Gelfand, A. E., Barlow, W. E., & Elmore, J. G. (2007). Performance assessment for radiologists interpreting screening mammography. Statistics in Medicine, 26(7), 1532-1551. doi:10.1002/sim.2633Cole, E. B., Pisano, E. D., Kistner, E. O., Muller, K. E., Brown, M. E., Feig, S. A., … Braeuning, M. P. (2003). Diagnostic Accuracy of Digital Mammography in Patients with Dense Breasts Who Underwent Problem-solving Mammography: Effects of Image Processing and Lesion Type. Radiology, 226(1), 153-160. doi:10.1148/radiol.2261012024Boyd, N. F., Guo, H., Martin, L. J., Sun, L., Stone, J., Fishell, E., … Yaffe, M. J. (2007). Mammographic Density and the Risk and Detection of Breast Cancer. New England Journal of Medicine, 356(3), 227-236. doi:10.1056/nejmoa062790Bird, R. E., Wallace, T. W., & Yankaskas, B. C. (1992). Analysis of cancers missed at screening mammography. Radiology, 184(3), 613-617. doi:10.1148/radiology.184.3.1509041Kerlikowske, K. (2000). Performance of Screening Mammography among Women with and without a First-Degree Relative with Breast Cancer. Annals of Internal Medicine, 133(11), 855. doi:10.7326/0003-4819-133-11-200012050-00009Nunes, F. L. S., Schiabel, H., & Goes, C. E. (2006). Contrast Enhancement in Dense Breast Images to Aid Clustered Microcalcifications Detection. Journal of Digital Imaging, 20(1), 53-66. doi:10.1007/s10278-005-6976-5Dinnes, J., Moss, S., Melia, J., Blanks, R., Song, F., & Kleijnen, J. (2001). Effectiveness and cost-effectiveness of double reading of mammograms in breast cancer screening: findings of a systematic review. The Breast, 10(6), 455-463. doi:10.1054/brst.2001.0350Robinson, P. J. (1997). Radiology’s Achilles’ heel: error and variation in the interpretation of the Röntgen image. The British Journal of Radiology, 70(839), 1085-1098. doi:10.1259/bjr.70.839.9536897Rangayyan, R. M., Ayres, F. J., & Leo Desautels, J. E. (2007). A review of computer-aided diagnosis of breast cancer: Toward the detection of subtle signs. Journal of the Franklin Institute, 344(3-4), 312-348. doi:10.1016/j.jfranklin.2006.09.003Vyborny, C. J., Giger, M. L., & Nishikawa, R. M. (2000). COMPUTER-AIDED DETECTION AND DIAGNOSIS OF BREAST CANCER. Radiologic Clinics of North America, 38(4), 725-740. doi:10.1016/s0033-8389(05)70197-4Giger, M. L. (2018). Machine Learning in Medical Imaging. Journal of the American College of Radiology, 15(3), 512-520. doi:10.1016/j.jacr.2017.12.028Xu, Y., Wang, Y., Yuan, J., Cheng, Q., Wang, X., & Carson, P. L. (2019). Medical breast ultrasound image segmentation by machine learning. Ultrasonics, 91, 1-9. doi:10.1016/j.ultras.2018.07.006Shan, J., Alam, S. K., Garra, B., Zhang, Y., & Ahmed, T. (2016). Computer-Aided Diagnosis for Breast Ultrasound Using Computerized BI-RADS Features and Machine Learning Methods. Ultrasound in Medicine & Biology, 42(4), 980-988. doi:10.1016/j.ultrasmedbio.2015.11.016Zhang, Q., Xiao, Y., Dai, W., Suo, J., Wang, C., Shi, J., & Zheng, H. (2016). Deep learning based classification of breast tumors with shear-wave elastography. Ultrasonics, 72, 150-157. doi:10.1016/j.ultras.2016.08.004Cheng, J.-Z., Ni, D., Chou, Y.-H., Qin, J., Tiu, C.-M., Chang, Y.-C., … Chen, C.-M. (2016). Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans. Scientific Reports, 6(1). doi:10.1038/srep24454Shin, S. Y., Lee, S., Yun, I. D., Kim, S. M., & Lee, K. M. (2019). Joint Weakly and Semi-Supervised Deep Learning for Localization and Classification of Masses in Breast Ultrasound Images. IEEE Transactions on Medical Imaging, 38(3), 762-774. doi:10.1109/tmi.2018.2872031Wang, J., Ding, H., Bidgoli, F. A., Zhou, B., Iribarren, C., Molloi, S., & Baldi, P. (2017). Detecting Cardiovascular Disease from Mammograms With Deep Learning. IEEE Transactions on Medical Imaging, 36(5), 1172-1181. doi:10.1109/tmi.2017.2655486Kooi, T., Litjens, G., van Ginneken, B., Gubern-Mérida, A., Sánchez, C. I., Mann, R., … Karssemeijer, N. (2017). Large scale deep learning for computer aided detection of mammographic lesions. Medical Image Analysis, 35, 303-312. doi:10.1016/j.media.2016.07.007Debelee, T. G., Schwenker, F., Ibenthal, A., & Yohannes, D. (2019). Survey of deep learning in breast cancer image analysis. Evolving Systems, 11(1), 143-163. doi:10.1007/s12530-019-09297-2Keen, J. D., Keen, J. M., & Keen, J. E. (2018). Utilization of Computer-Aided Detection for Digital Screening Mammography in the United States, 2008 to 2016. Journal of the American College of Radiology, 15(1), 44-48. doi:10.1016/j.jacr.2017.08.033Henriksen, E. L., Carlsen, J. F., Vejborg, I. M., Nielsen, M. B., & Lauridsen, C. A. (2018). The efficacy of using computer-aided detection (CAD) for detection of breast cancer in mammography screening: a systematic review. Acta Radiologica, 60(1), 13-18. doi:10.1177/0284185118770917Gao, Y., Geras, K. J., Lewin, A. A., & Moy, L. (2019). New Frontiers: An Update on Computer-Aided Diagnosis for Breast Imaging in the Age of Artificial Intelligence. American Journal of Roentgenology, 212(2), 300-307. doi:10.2214/ajr.18.20392Pacilè, S., Lopez, J., Chone, P., Bertinotti, T., Grouin, J. M., & Fillard, P. (2020). Improving Breast Cancer Detection Accuracy of Mammography with the Concurrent Use of an Artificial Intelligence Tool. Radiology: Artificial Intelligence, 2(6), e190208. doi:10.1148/ryai.2020190208Huynh, B. Q., Li, H., & Giger, M. L. (2016). Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. Journal of Medical Imaging, 3(3), 034501. doi:10.1117/1.jmi.3.3.034501Yap, M. H., Pons, G., Marti, J., Ganau, S., Sentis, M., Zwiggelaar, R., … Marti, R. (2018). Automated Breast Ultrasound Lesions Detection Using Convolutional Neural Networks. IEEE Journal of Biomedical and Health Informatics, 22(4), 1218-1226. doi:10.1109/jbhi.2017.2731873Moon, W. K., Lee, Y.-W., Ke, H.-H., Lee, S. H., Huang, C.-S., & Chang, R.-F. (2020). Computer‐aided diagnosis of breast ultrasound images using ensemble learning from convolutional neural networks. Computer Methods and Programs in Biomedicine, 190, 105361. doi:10.1016/j.cmpb.2020.105361LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. doi:10.1038/nature14539Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2017). Deep learning for healthcare: review, opportunities and challenges. Briefings in Bioinformatics, 19(6), 1236-1246. doi:10.1093/bib/bbx044Shin, H.-C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., … Summers, R. M. (2016). Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Transactions on Medical Imaging, 35(5), 1285-1298. doi:10.1109/tmi.2016.2528162Lee, J.-G., Jun, S., Cho, Y.-W., Lee, H., Kim, G. B., Seo, J. B., & Kim, N. (2017). Deep Learning in Medical Imaging: General Overview. Korean Journal of Radiology, 18(4), 570. doi:10.3348/kjr.2017.18.4.570Suzuki, K. (2017). Overview of deep learning in medical imaging. Radiological Physics and Technology, 10(3), 257-273. doi:10.1007/s12194-017-0406-5Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2010). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. International Journal of Surgery, 8(5), 336-341. doi:10.1016/j.ijsu.2010.02.007Khan, K. S., Kunz, R., Kleijnen, J., & Antes, G. (2003). Five Steps to Conducting a Systematic Review. Journal of the Royal Society of Medicine, 96(3), 118-121. doi:10.1177/014107680309600304Han, S., Kang, H.-K., Jeong, J.-Y., Park, M.-H., Kim, W., Bang, W.-C., & Seong, Y.-K. (2017). A deep learning framework for supporting the classification of breast lesions in ultrasound images. Physics in Medicine & Biology, 62(19), 7714-7728. doi:10.1088/1361-6560/aa82ecMoreira, I. C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M. J., & Cardoso, J. S. (2012). INbreast. Academic Radiology, 19(2), 236-248. doi:10.1016/j.acra.2011.09.014Abdelhafiz, D., Yang, C., Ammar, R., & Nabavi, S. (2019). Deep convolutional neural networks for mammography: advances, challenges and applications. BMC Bioinformatics, 20(S11). doi:10.1186/s12859-019-2823-4Byra, M., Jarosik, P., Szubert, A., Galperin, M., Ojeda-Fournier, H., Olson, L., … Andre, M. (2020). Breast mass segmentation in ultrasound with selective kernel U-Net convolutional neural network. Biomedical Signal Processing and Control, 61, 102027. doi:10.1016/j.bspc.2020.102027Jiao, Z., Gao, X., Wang, Y., & Li, J. (2016). A deep feature based framework for breast masses classification. Neurocomputing, 197, 221-231. doi:10.1016/j.neucom.2016.02.060Arevalo, J., González, F. A., Ramos-Pollán, R., Oliveira, J. L., & Guevara Lopez, M. A. (2016). Representation learning for mammography mass lesion classification with convolutional neural networks. Computer Methods and Programs in Biomedicine, 127, 248-257. doi:10.1016/j.cmpb.2015.12.014Peng, W., Mayorga, R. V., & Hussein, E. M. A. (2016). An automated confirmatory system for analysis of mammograms. Computer Methods and Programs in Biomedicine, 125, 134-144. doi:10.1016/j.cmpb.2015.09.019Al-Dhabyani, W., Gomaa, M., Khaled, H., & Fahmy, A. (2020). Dataset of breast ultrasound images. Data in Brief, 28, 104863. doi:10.1016/j.dib.2019.104863Piotrzkowska-Wróblewska, H., Dobruch-Sobczak, K., Byra, M., & Nowicki, A. (2017). Open access database of raw ultrasonic signals acquired from malignant and benign breast lesions. Medical Physics, 44(11), 6105-6109. doi:10.1002/mp.12538Fujita, H. (2020). AI-based computer-aided diagnosis (AI-CAD): the latest review to read first. Radiological Physics and Technology, 13(1), 6-19. doi:10.1007/s12194-019-00552-4Sengupta, S., Singh, A., Leopold, H. A., Gulati, T., & Lakshminarayanan, V. (2020). Ophthalmic diagnosis using deep learning with fundus images – A critical review. Artificial Intelligence in Medicine, 102, 101758. doi:10.1016/j.artmed.2019.101758Ganesan, K., Acharya, U. R., Chua, K. C., Min, L. C., & Abraham, K. T. (2013). Pectoral muscle segmentation: A review. Computer Methods and Programs in Biomedicine, 110(1), 48-57. doi:10.1016/j.cmpb.2012.10.020Huang, Q., Luo, Y., & Zhang, Q. (2017). Breast ultrasound image segmentation: a survey. International Journal of Computer Assisted Radiology and Surgery, 12(3), 493-507. doi:10.1007/s11548-016-1513-1Noble, J. A., & Boukerroui, D. (2006). Ultrasound image segmentation: a survey. IEEE Transactions on Medical Imaging, 25(8), 987-1010. doi:10.1109/tmi.2006.877092Kallergi, M., Woods, K., Clarke, L. P., Qian, W., & Clark, R. A. (1992). Image segmentation in digital mammography: Comparison of local thresholding and region growing algorithms. Computerized Medical Imaging and Graphics, 16(5), 323-331. doi:10.1016/0895-6111(92)90145-yTsantis, S., Dimitropoulos, N., Cavouras, D., & Nikiforidis, G. (2006). A hybrid multi-scale model for thyroid nodule boundary detection on ultrasound images. Computer Methods and Programs in Biomedicine, 84(2-3), 86-98. doi:10.1016/j.cmpb.2006.09.006Ilesanmi, A. E., Idowu, O. P., & Makhanov, S. S. (2020). Multiscale superpixel method for segmentation of breast ultrasound. Computers in Biology and Medicine, 125, 103879. doi:10.1016/j.compbiomed.2020.103879Chen, D.-R., Chang, R.-F., Kuo, W.-J., Chen, M.-C., & Huang, Y. .-L. (2002). Diagnosis of breast tumors with sonographic texture analysis using wavelet transform and neural networks. Ultrasound in Medicine & Biology, 28(10), 1301-1310. doi:10.1016/s0301-5629(02)00620-8Cheng, H. D., Shan, J., Ju, W., Guo, Y., & Zhang, L. (2010). Automated breast cancer detection and classification using ultrasound images: A survey. Pattern Recognition, 43(1), 299-317. doi:10.1016/j.patcog.2009.05.012Chan, H.-P., Wei, D., Helvie, M. A., Sahiner, B., Adler, D. D., Goodsitt, M. M., & Petrick, N. (1995). Computer-aided classification of mammographic masses and normal tissue: linear discriminant analysis in texture feature space. Physics in Medicine and Biology, 40(5), 857-876. doi:10.1088/0031-9155/40/5/010Tanaka, T., Torii, S., Kabuta, I., Shimizu, K., & Tanaka, M. (2007). Pattern Classification of Nevus with Texture Analysis. IEEJ Transactions on Electrical and Electronic Engineering, 3(1), 143-150. doi:10.1002/tee.20246Singh, B., Jain, V. K., & Singh, S. (2014). Mammogram Mass Classification Using Support Vector Machine with Texture, Shape Features and Hierarchical Centroid Method. Journal of Medical Imaging and Health Informatics, 4(5), 687-696. doi:10.1166/jmihi.2014.1312Pal, N. R., Bhowmick, B., Patel, S. K., Pal, S., & Das, J. (2008). A multi-stage neural network aided system for detection of microcalcifications in digitized mammograms. Neurocomputing, 71(13-15), 2625-2634. doi:10.1016/j.neucom.2007.06.015Ayer, T., Chen, Q., & Burnside, E. S. (2013). Artificial Neural Networks in Mammography Interpretation and Diagnostic Decision Making. Computational and Mathematical Methods in Medicine, 2013, 1-10. doi:10.1155/2013/832509Sumbaly, R., Vishnusri, N., & Jeyalatha, S. (2014). Diagnosis of Breast Cancer using Decision Tree Data Mining Technique. International Journal of Computer Applications, 98(10), 16-24. doi:10.5120/17219-7456Landwehr, N., Hall, M., & Frank, E. (2005). Logistic Model Trees. Machine Learning, 59(1-2), 161-205. doi:10.1007/s10994-005-0466-3Abdel-Zaher, A. M., & Eldeib, A. M. (2016). Breast cancer classification using deep belief networks. Expert Systems with Applications, 46, 139-144. doi:10.1016/j.eswa.2015.10.015Nishikawa, R. M., Giger, M. L., Doi, K., Metz, C. E., Yin, F.-F., Vyborny, C. J., & Schmidt, R. A. (1994). Effect of case selection on the performance of computer-aided detection schemes. Medical Physics, 21(2), 265-269. doi:10.1118/1.597287Guo, R., Lu, G., Qin, B., & Fei, B. (2018). Ultrasound Imaging Technologies for Breast Cancer Detection and Management: A Review. Ultrasound in Medicine & Biology, 44(1), 37-70. doi:10.1016/j.ultrasmedbio.2017.09.012Kang, C.-C., Wang, W.-J., & Kang, C.-H. (2012). Image segmentation with complicated background by using seeded region growing. AEU - International Journal of Electronics and Communications, 66(9), 767-771. doi:10.1016/j.aeue.2012.01.011Prabusankarlal, K. M., Thirumoorthy, P., & Manavalan, R. (2014). Computer Aided Breast Cancer Diagnosis Techniques in Ultrasound: A Survey. Journal of Medical Imaging and Health Informatics, 4(3), 331-349. doi:10.1166/jmihi.2014.1269Abdallah, Y. M., Elgak, S., Zain, H., Rafiq, M., A. Ebaid, E., & A. Elnaema, A. (2018). Breast cancer detection using image enhancement and segmentation algorithms. Biomedical Research, 29(20). doi:10.4066/biomedicalresearch.29-18-1106K.U, S., & S, G. R. (2016). Objective Quality Assessment of Image Enhancement Methods in Digital Mammography - A Comparative Study. Signal & Image Processing : An International Journal, 7(4), 01-13. doi:10.5121/sipij.2016.7401Pizer, S. M., Amburn, E. P., Austin, J. D., Cromartie, R., Geselowitz, A., Greer, T., … Zuiderveld, K. (1987). Adaptive histogram equalization and its variations. Computer Vision, Graphics, and Image Processing, 39(3), 355-368. doi:10.1016/s0734-189x(87)80186-xPisano, E. D., Zong, S., Hemminger, B. M., DeLuca, M., Johnston, R. E., Muller, K., … Pizer, S. M. (1998). Contrast Limited Adaptive Histogram Equalization image processing to improve the detection of simulated spiculations in dense mammograms. Journal of Digital Imaging, 11(4), 193-200. doi:10.1007/bf03178082Wan, J., Yin, H., Chong, A.-X., & Liu, Z.-H. (2020). Progressive residual networks for image super-resolution. Applied Intelligence, 50(5), 1620-1632. doi:10.1007/s10489-019-01548-8Umehara, K., Ota, J., & Ishida, T. (2017). Super-Resolution Imaging of Mammograms Based on the Super-Resolution Convolutional Neural Network. Open Journal of Medical Imaging, 07(04), 180-195. doi:10.4236/ojmi.2017.74018Dong, C., Loy, C. C., He, K., & Tang, X. (2016). Image Super-Resolution Using Deep Convolutional Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), 295-307. doi:10.1109/tpami.2015.2439281Jiang, Y., & Li, J. (2020). Generative Adversarial Network for Image Super-Resolution Combining Texture Loss. Applied Sciences, 10(5), 1729. doi:10.3390/app10051729Schultz, R. R., & Stevenson, R. L. (1994). A Bayesian approach to image expansion for improved definition. IEEE Transactions on Image Processing, 3(3), 233-242. doi:10.1109/83.287017Lei Zhang, & Xiaolin Wu. (2006). An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Transactions on Image Processing, 15(8), 2226-2238. doi:10.1109/tip.2006.877407Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6(1). doi:10.1186/s40537-019-0197-0Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. Journal of Big Data, 3(1). doi:10.1186/s40537-016-0043-6Ling Shao, Fan Zhu, & Xuelong Li. (2015). Transfer Learning for Visual Categorization: A Survey. IEEE Transactions on Neural Networks and Learning Syste

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Breast cancer diagnosis: a survey of pre-processing, segmentation, feature extraction and classification

    Get PDF
    Machine learning methods have been an interesting method in the field of medical for many years, and they have achieved successful results in various fields of medical science. This paper examines the effects of using machine learning algorithms in the diagnosis and classification of breast cancer from mammography imaging data. Cancer diagnosis is the identification of images as cancer or non-cancer, and this involves image preprocessing, feature extraction, classification, and performance analysis. This article studied 93 different references mentioned in the previous years in the field of processing and tries to find an effective way to diagnose and classify breast cancer. Based on the results of this research, it can be concluded that most of today’s successful methods focus on the use of deep learning methods. Finding a new method requires an overview of existing methods in the field of deep learning methods in order to make a comparison and case study
    corecore