100,147 research outputs found

    A Feeling for History? Bakhtin and `The Problem of Great Time'

    Get PDF
    ‘Great time’ has usually been seen as a ‘late term’ of Bakhtin’s. However, although it occurs most frequently in works written in the 1960s and 1970s, there is one known instance of its use in the 1940s. This confirms the close association between the notion and Bakhtin’s dominant concerns of the 1930s and 1940s, in particular the ‘becoming’ that he associates with the novel in general and the Bildungsroman in particular. ‘Great time’ thus needs to be examined in the context of the connections between his thought and Hegelian antecedents, as well as his of his approach to time in terms of other models, both philosophical and anthropological

    Towards general spatial intelligence

    Get PDF
    The goal of General Spatial Intelligence is to present a unified theory to support the various aspects of spatial experience, whether physical or cognitive. We acknowledge the fact that GIScience has to assume a particular worldview, resulting from specific positions regarding metaphysics, ontology, epistemology, mind, language, cognition and representation. Implicit positions regarding these domains may allow solutions to isolated problems but often hamper a more encompassing approach. We argue that explicitly defining a worldview allows the grounding and derivation of multi-modal models, establishing precise problems, allowing falsifiability. We present an example of such a theory founded on process metaphysics, where the ontological elements are called differences. We show that a worldview has implications regarding the nature of space and, in the case of the chosen metaphysical layer, favours a model of space as true spacetime, i.e. four-dimensionality. Finally we illustrate the approach using a scenario from psychology and AI based planning

    Where there is life there is mind: In support of a strong life-mind continuity thesis

    Get PDF
    This paper considers questions about continuity and discontinuity between life and mind. It begins by examining such questions from the perspective of the free energy principle (FEP). The FEP is becoming increasingly influential in neuroscience and cognitive science. It says that organisms act to maintain themselves in their expected biological and cognitive states, and that they can do so only by minimizing their free energy given that the long-term average of free energy is entropy. The paper then argues that there is no singular interpretation of the FEP for thinking about the relation between life and mind. Some FEP formulations express what we call an independence view of life and mind. One independence view is a cognitivist view of the FEP. It turns on information processing with semantic content, thus restricting the range of systems capable of exhibiting mentality. Other independence views exemplify what we call an overly generous non-cognitivist view of the FEP, and these appear to go in the opposite direction. That is, they imply that mentality is nearly everywhere. The paper proceeds to argue that non-cognitivist FEP, and its implications for thinking about the relation between life and mind, can be usefully constrained by key ideas in recent enactive approaches to cognitive science. We conclude that the most compelling account of the relationship between life and mind treats them as strongly continuous, and that this continuity is based on particular concepts of life (autopoiesis and adaptivity) and mind (basic and non-semantic)

    From Biological to Synthetic Neurorobotics Approaches to Understanding the Structure Essential to Consciousness (Part 3)

    Get PDF
    This third paper locates the synthetic neurorobotics research reviewed in the second paper in terms of themes introduced in the first paper. It begins with biological non-reductionism as understood by Searle. It emphasizes the role of synthetic neurorobotics studies in accessing the dynamic structure essential to consciousness with a focus on system criticality and self, develops a distinction between simulated and formal consciousness based on this emphasis, reviews Tani and colleagues' work in light of this distinction, and ends by forecasting the increasing importance of synthetic neurorobotics studies for cognitive science and philosophy of mind going forward, finally in regards to most- and myth-consciousness

    Everything, and then some

    Get PDF
    On its intended interpretation, logical, mathematical and metaphysical discourse sometimes seems to involve absolutely unrestricted quantification. Yet our standard semantic theories do not allow for interpretations of a language as expressing absolute generality. A prominent strategy for defending absolute generality, influentially proposed by Timothy Williamson in his paper ‘Everything’ (2003), avails itself of a hierarchy of quantifiers of ever increasing orders to develop non-standard semantic theories that do provide for such interpretations. However, as emphasized by Øystein Linnebo and Agustín Rayo (2012), there is pressure on this view to extend the quantificational hierarchy beyond the finite level, and, relatedly, to allow for a cumulative conception of the hierarchy. In his recent book, Modal Logic as Metaphysics (2013), Williamson yields to that pressure. I show that the emerging cumulative higher-orderist theory has implications of a strongly generality-relativist flavour, and consequently undermines much of the spirit of generality absolutism that Williamson set out to defend

    Computer Science and Metaphysics: A Cross-Fertilization

    Full text link
    Computational philosophy is the use of mechanized computational techniques to unearth philosophical insights that are either difficult or impossible to find using traditional philosophical methods. Computational metaphysics is computational philosophy with a focus on metaphysics. In this paper, we (a) develop results in modal metaphysics whose discovery was computer assisted, and (b) conclude that these results work not only to the obvious benefit of philosophy but also, less obviously, to the benefit of computer science, since the new computational techniques that led to these results may be more broadly applicable within computer science. The paper includes a description of our background methodology and how it evolved, and a discussion of our new results.Comment: 39 pages, 3 figure
    • 

    corecore