25 research outputs found

    Modeling 4.0: Conceptual Modeling in a Digital Era

    Get PDF
    Digitization provides entirely new affordances for our economies and societies. This leads to previously unseen design opportunities and complexities as systems and their boundaries are re-defined, creating a demand for appropriate methods to support design that caters to these new demands. Conceptual modeling is an established means for this, but it needs to be advanced to adequately depict the requirements of digitization. However, unlike the actual deployment of digital technologies in various industries, the domain of conceptual modeling itself has not yet undergone a comprehensive renewal in light of digitization. Therefore, inspired by the notion of Industry 4.0, an overarching concept for digital manufacturing, in this commentary paper, we propose Modeling 4.0 as the notion for conceptual modeling mechanisms in a digital environment. In total, 12 mechanisms of conceptual modeling are distinguished, providing ample guidance for academics and professionals interested in ensuring that modeling techniques and methods continue to fit contemporary and emerging requirements

    An Approach to QoS-based Task Distribution in Edge Computing Networks for IoT Applications

    Get PDF
    abstract: Internet of Things (IoT) is emerging as part of the infrastructures for advancing a large variety of applications involving connections of many intelligent devices, leading to smart communities. Due to the severe limitation of the computing resources of IoT devices, it is common to offload tasks of various applications requiring substantial computing resources to computing systems with sufficient computing resources, such as servers, cloud systems, and/or data centers for processing. However, this offloading method suffers from both high latency and network congestion in the IoT infrastructures. Recently edge computing has emerged to reduce the negative impacts of tasks offloading to remote computing systems. As edge computing is in close proximity to IoT devices, it can reduce the latency of task offloading and reduce network congestion. Yet, edge computing has its drawbacks, such as the limited computing resources of some edge computing devices and the unbalanced loads among these devices. In order to effectively explore the potential of edge computing to support IoT applications, it is necessary to have efficient task management and load balancing in edge computing networks. In this dissertation research, an approach is presented to periodically distributing tasks within the edge computing network while satisfying the quality-of-service (QoS) requirements of tasks. The QoS requirements include task completion deadline and security requirement. The approach aims to maximize the number of tasks that can be accommodated in the edge computing network, with consideration of tasks’ priorities. The goal is achieved through the joint optimization of the computing resource allocation and network bandwidth provisioning. Evaluation results show the improvement of the approach in increasing the number of tasks that can be accommodated in the edge computing network and the efficiency in resource utilization.Dissertation/ThesisDoctoral Dissertation Computer Engineering 201

    Universal Mobile Service Execution Framework for Device-To-Device Collaborations

    Get PDF
    There are high demands of effective and high-performance of collaborations between mobile devices in the places where traditional Internet connections are unavailable, unreliable, or significantly overburdened, such as on a battlefield, disaster zones, isolated rural areas, or crowded public venues. To enable collaboration among the devices in opportunistic networks, code offloading and Remote Method Invocation are the two major mechanisms to ensure code portions of applications are successfully transmitted to and executed on the remote platforms. Although these domains are highly enjoyed in research for a decade, the limitations of multi-device connectivity, system error handling or cross platform compatibility prohibit these technologies from being broadly applied in the mobile industry. To address the above problems, we designed and developed UMSEF - an Universal Mobile Service Execution Framework, which is an innovative and radical approach for mobile computing in opportunistic networks. Our solution is built as a component-based mobile middleware architecture that is flexible and adaptive with multiple network topologies, tolerant for network errors and compatible for multiple platforms. We provided an effective algorithm to estimate the resource availability of a device for higher performance and energy consumption and a novel platform for mobile remote method invocation based on declarative annotations over multi-group device networks. The experiments in reality exposes our approach not only achieve the better performance and energy consumption, but can be extended to large-scaled ubiquitous or IoT systems

    A semantic framework for unified cloud service search, recommendation, retrieval and management

    Get PDF
    Cloud computing (CC) is a revolutionary paradigm of consuming Information and Communication Technology (ICT) services. However, while trying to find the optimal services, many users often feel confused due to the inadequacy of service information description. Although some efforts are made in the semantic modelling, retrieval and recommendation of cloud services, existing practices would only work effectively for certain restricted scenarios to deal for example with basic and non-interactive service specifications. In the meantime, various service management tasks are usually performed individually for diverse cloud resources for distinct service providers. This results into significant decreased effectiveness and efficiency for task implementation. Fundamentally, it is due to the lack of a generic service management interface which enables a unified service access and manipulation regardless of the providers or resource types.To address the above issues, the thesis proposes a semantic-driven framework, which integrates two main novel specification approaches, known as agility-oriented and fuzziness-embedded cloud service semantic specifications, and cloud service access and manipulation request operation specifications. These consequently enable comprehensive service specification by capturing the in-depth cloud concept details and their interactions, even across multiple service categories and abstraction levels. Utilising the specifications as CC knowledge foundation, a unified service recommendation and management platform is implemented. Based on considerable experiment data collected on real-world cloud services, the approaches demonstrate distinguished effectiveness in service search, retrieval and recommendation tasks whilst the platform shows outstanding performance for a wide range of service access, management and interaction tasks. Furthermore, the framework includes two sets of innovative specification processing algorithms specifically designed to serve advanced CC tasks: while the fuzzy rating and ontology evolution algorithms establish a manner of collaborative cloud service specification, the service orchestration reasoning algorithms reveal a promising means of dynamic service compositions

    PROFILING - CONCEPTS AND APPLICATIONS

    Get PDF
    Profiling is an approach to put a label or a set of labels on a subject, considering the characteristics of this subject. The New Oxford American Dictionary defines profiling as: “recording and analysis of a person’s psychological and behavioral characteristics, so as to assess or predict his/her capabilities in a certain sphere or to assist in identifying a particular subgroup of people”. This research extends this definition towards things demonstrating that many methods used for profiling of people may be applied for a different type of subjects, namely things. The goal of this research concerns proposing methods for discovery of profiles of users and things with application of Data Science methods. The profiles are utilized in vertical and 2 horizontal scenarios and concern such domains as smart grid and telecommunication (vertical scenarios), and support provided both for the needs of authorization and personalization (horizontal usage).:The thesis consists of eight chapters including an introduction and a summary. First chapter describes motivation for work that was carried out for the last 8 years together with discussion on its importance both for research and business practice. The motivation for this work is much broader and emerges also from business importance of profiling and personalization. The introduction summarizes major research directions, provides research questions, goals and supplementary objectives addressed in the thesis. Research methodology is also described, showing impact of methodological aspects on the work undertaken. Chapter 2 provides introduction to the notion of profiling. The definition of profiling is introduced. Here, also a relation of a user profile to an identity is discussed. The papers included in this chapter show not only how broadly a profile may be understood, but also how a profile may be constructed considering different data sources. Profiling methods are introduced in Chapter 3. This chapter refers to the notion of a profile developed using the BFI-44 personality test and outcomes of a survey related to color preferences of people with a specific personality. Moreover, insights into profiling of relations between people are provided, with a focus on quality of a relation emerging from contacts between two entities. Chapters from 4 to 7 present different scenarios that benefit from application of profiling methods. Chapter 4 starts with introducing the notion of a public utility company that in the thesis is discussed using examples from smart grid and telecommunication. Then, in chapter 4 follows a description of research results regarding profiling for the smart grid, focusing on a profile of a prosumer and forecasting demand and production of the electric energy in the smart grid what can be influenced e.g. by weather or profiles of appliances. Chapter 5 presents application of profiling techniques in the field of telecommunication. Besides presenting profiling methods based on telecommunication data, in particular on Call Detail Records, also scenarios and issues related to privacy and trust are addressed. Chapter 6 and Chapter 7 target at horizontal applications of profiling that may be of benefit for multiple domains. Chapter 6 concerns profiling for authentication using un-typical data sources such as Call Detail Records or data from a mobile phone describing the user behavior. Besides proposing methods, also limitations are discussed. In addition, as a side research effect a methodology for evaluation of authentication methods is proposed. Chapter 7 concerns personalization and consists of two diverse parts. Firstly, behavioral profiles to change interface and behavior of the system are proposed and applied. The performance of solutions personalizing content either locally or on the server is studied. Then, profiles of customers of shopping centers are created based on paths identified using Call Detail Records. The analysis demonstrates that the data that is collected for one purpose, may significantly influence other business scenarios. Chapter 8 summarizes the research results achieved by the author of this document. It presents contribution over state of the art as well as some insights into the future work planned
    corecore