926 research outputs found

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Medical data processing and analysis for remote health and activities monitoring

    Get PDF
    Recent developments in sensor technology, wearable computing, Internet of Things (IoT), and wireless communication have given rise to research in ubiquitous healthcare and remote monitoring of human\u2019s health and activities. Health monitoring systems involve processing and analysis of data retrieved from smartphones, smart watches, smart bracelets, as well as various sensors and wearable devices. Such systems enable continuous monitoring of patients psychological and health conditions by sensing and transmitting measurements such as heart rate, electrocardiogram, body temperature, respiratory rate, chest sounds, or blood pressure. Pervasive healthcare, as a relevant application domain in this context, aims at revolutionizing the delivery of medical services through a medical assistive environment and facilitates the independent living of patients. In this chapter, we discuss (1) data collection, fusion, ownership and privacy issues; (2) models, technologies and solutions for medical data processing and analysis; (3) big medical data analytics for remote health monitoring; (4) research challenges and opportunities in medical data analytics; (5) examples of case studies and practical solutions

    Recent advances in industrial wireless sensor networks towards efficient management in IoT

    Get PDF
    With the accelerated development of Internet-of- Things (IoT), wireless sensor networks (WSN) are gaining importance in the continued advancement of information and communication technologies, and have been connected and integrated with Internet in vast industrial applications. However, given the fact that most wireless sensor devices are resource constrained and operate on batteries, the communication overhead and power consumption are therefore important issues for wireless sensor networks design. In order to efficiently manage these wireless sensor devices in a unified manner, the industrial authorities should be able to provide a network infrastructure supporting various WSN applications and services that facilitate the management of sensor-equipped real-world entities. This paper presents an overview of industrial ecosystem, technical architecture, industrial device management standards and our latest research activity in developing a WSN management system. The key approach to enable efficient and reliable management of WSN within such an infrastructure is a cross layer design of lightweight and cloud-based RESTful web service

    A Survey on Understanding and Representing Privacy Requirements in the Internet-of-Things

    Get PDF
    People are interacting with online systems all the time. In order to use the services being provided, they give consent for their data to be collected. This approach requires too much human effort and is impractical for systems like Internet-of-Things (IoT) where human-device interactions can be large. Ideally, privacy assistants can help humans make privacy decisions while working in collaboration with them. In our work, we focus on the identification and representation of privacy requirements in IoT to help privacy assistants better understand their environment. In recent years, more focus has been on the technical aspects of privacy. However, the dynamic nature of privacy also requires a representation of social aspects (e.g., social trust). In this survey paper, we review the privacy requirements represented in existing IoT ontologies. We discuss how to extend these ontologies with new requirements to better capture privacy, and we introduce case studies to demonstrate the applicability of the novel requirements

    A Survey on Understanding and Representing Privacy Requirements in IoT

    Get PDF

    IoT-HASS: A Framework For Protecting Smart Home Environment

    Get PDF
    While many solutions have been proposed for smart home security, the problem that no single solution fully protects the smart home environment still exists. In this research we propose a security framework to protect the smart home environment. The proposed framework includes three engines that complement each other to protect the smart home IoT devices. The first engine is an IDS/IPS module that monitors all traffic in the home network and then detects, alerts users, and/or blocks packets using anomaly-based detection. The second engine works as a device management module that scans and verifies IoT devices in the home network, allowing the user to flag any suspect device. The third engine works as a privacy monitoring module that monitors and detects information transmitted in plaintext and alerts the user if such information is detected. We call the proposed system IoT-Home Advanced Security System or IoT-HASS for short. IoT-HASS was developed using Python 3 and can be implemented in two modes of operation. The in-line mode allows the IoT-HASS to be installed in-line with the traffic inside a Raspberry Pi or a Router. In the in-line mode IoT-HASS acts as an IPS that can detect and block threats as well as alert the user. The second mode is the passive mode where IoT-HASS in not installed in-line with the traffic and can act as an IDS that passively monitors the traffic, detecting threats and alerting the user, but not blocking the attack. IoT-HASS was evaluated via four testing scenarios. It demonstrated superior performance in all testing scenarios in detecting attacks such as DDoS attacks, Brute Force Attacks, and Cross Site Scripting (XSS) Attacks. In each of the four test scenarios, we also tested the device management functionality, which we found to successfully scan and display IoT devices for the homeowner. The extensive evaluating and testing of IoT-HASS showed that IoT-HASS can successfully run in a small device such as a Raspberry Pi, and thus, it will most likely run in an embedded device as an IoT device. Our future research will concentrate on strengthening the current features of IoT-HASS to include additional functionalities

    IoT Security Evolution: Challenges and Countermeasures Review

    Get PDF
    Internet of Things (IoT) architecture, technologies, applications and security have been recently addressed by a number of researchers. Basically, IoT adds internet connectivity to a system of intelligent devices, machines, objects and/or people. Devices are allowed to automatically collect and transmit data over the Internet, which exposes them to serious attacks and threats. This paper provides an intensive review of IoT evolution with primary focusing on security issues together with the proposed countermeasures. Thus, it outlines the IoT security challenges as a future roadmap of research for new researchers in this domain

    Norm-based and commitment-driven agentification of the Internet of Things

    Get PDF
    There are no doubts that the Internet-of-Things (IoT) has conquered the ICT industry to the extent that many governments and organizations are already rolling out many anywhere,anytime online services that IoT sustains. However, like any emerging and disruptive technology, multiple obstacles are slowing down IoT practical adoption including the passive nature and privacy invasion of things. This paper examines how to empower things with necessary capabilities that would make them proactive and responsive. This means things can, for instance reach out to collaborative peers, (un)form dynamic communities when necessary, avoid malicious peers, and be “questioned” for their actions. To achieve such empowerment, this paper presents an approach for agentifying things using norms along with commitments that operationalize these norms. Both norms and commitments are specialized into social (i.e., application independent) and business (i.e., application dependent), respectively. Being proactive, things could violate commitments at run-time, which needs to be detected through monitoring. In this paper, thing agentification is illustrated with a case study about missing children and demonstrated with a testbed that uses different IoT-related technologies such as Eclipse Mosquitto broker and Message Queuing Telemetry Transport protocol. Some experiments conducted upon this testbed are also discussed
    • …
    corecore