29,481 research outputs found

    Toward a general theory of quantum games

    Full text link
    We study properties of quantum strategies, which are complete specifications of a given party's actions in any multiple-round interaction involving the exchange of quantum information with one or more other parties. In particular, we focus on a representation of quantum strategies that generalizes the Choi-Jamio{\l}kowski representation of quantum operations. This new representation associates with each strategy a positive semidefinite operator acting only on the tensor product of its input and output spaces. Various facts about such representations are established, and two applications are discussed: the first is a new and conceptually simple proof of Kitaev's lower bound for strong coin-flipping, and the second is a proof of the exact characterization QRG = EXP of the class of problems having quantum refereed games.Comment: 23 pages, 12pt font, single-column compilation of STOC 2007 final versio

    Toward Quantum Combinatorial Games

    Full text link
    In this paper, we propose a Quantum variation of combinatorial games, generalizing the Quantum Tic-Tac-Toe proposed by Allan Goff. A combinatorial game is a two-player game with no chance and no hidden information, such as Go or Chess. In this paper, we consider the possibility of playing superpositions of moves in such games. We propose different rulesets depending on when superposed moves should be played, and prove that all these rulesets may lead similar games to different outcomes. We then consider Quantum variations of the game of Nim. We conclude with some discussion on the relative interest of the different rulesets

    Game Theory Meets Network Security: A Tutorial at ACM CCS

    Full text link
    The increasingly pervasive connectivity of today's information systems brings up new challenges to security. Traditional security has accomplished a long way toward protecting well-defined goals such as confidentiality, integrity, availability, and authenticity. However, with the growing sophistication of the attacks and the complexity of the system, the protection using traditional methods could be cost-prohibitive. A new perspective and a new theoretical foundation are needed to understand security from a strategic and decision-making perspective. Game theory provides a natural framework to capture the adversarial and defensive interactions between an attacker and a defender. It provides a quantitative assessment of security, prediction of security outcomes, and a mechanism design tool that can enable security-by-design and reverse the attacker's advantage. This tutorial provides an overview of diverse methodologies from game theory that includes games of incomplete information, dynamic games, mechanism design theory to offer a modern theoretic underpinning of a science of cybersecurity. The tutorial will also discuss open problems and research challenges that the CCS community can address and contribute with an objective to build a multidisciplinary bridge between cybersecurity, economics, game and decision theory

    Quantum-mechanical machinery for rational decision-making in classical guessing game

    Full text link
    In quantum game theory, one of the most intriguing and important questions is, "Is it possible to get quantum advantages without any modification of the classical game?" The answer to this question so far has largely been negative. So far, it has usually been thought that a change of the classical game setting appears to be unavoidable for getting the quantum advantages. However, we give an affirmative answer here, focusing on the decision-making process (we call 'reasoning') to generate the best strategy, which may occur internally, e.g., in the player's brain. To show this, we consider a classical guessing game. We then define a one-player reasoning problem in the context of the decision-making theory, where the machinery processes are designed to simulate classical and quantum reasoning. In such settings, we present a scenario where a rational player is able to make better use of his/her weak preferences due to quantum reasoning, without any altering or resetting of the classically defined game. We also argue in further analysis that the quantum reasoning may make the player fail, and even make the situation worse, due to any inappropriate preferences.Comment: 9 pages, 10 figures, The scenario is more improve

    Altruistic Contents of Quantum Prisoner's Dilemma

    Full text link
    We examine the classical contents of quantum games. It is shown that a quantum strategy can be interpreted as a classical strategies with effective density-dependent game matrices composed of transposed matrix elements. In particular, successful quantum strategies in dilemma games are interpreted in terms of a symmetrized game matrix that corresponds to an altruistic game plan.Comment: Revised according to publisher's request: 4 pgs, 2 fgs, ReVTeX4. For more info, go to http://www.mech.kochi-tech.ac.jp/cheon

    Constructing quantum games from symmetric non-factorizable joint probabilities

    Full text link
    We construct quantum games from a table of non-factorizable joint probabilities, coupled with a symmetry constraint, requiring symmetrical payoffs between the players. We give the general result for a Nash equilibrium and payoff relations for a game based on non-factorizable joint probabilities, which embeds the classical game. We study a quantum version of Prisoners' Dilemma, Stag Hunt, and the Chicken game constructed from a given table of non-factorizable joint probabilities to find new outcomes in these games. We show that this approach provides a general framework for both classical and quantum games without recourse to the formalism of quantum mechanics.Comment: 20 pages, no figure, accepted for publication in Physics Letters

    Quantum fluctuations and life

    Full text link
    There have been many claims that quantum mechanics plays a key role in the origin and/or operation of biological organisms, beyond merely providing the basis for the shapes and sizes of biological molecules and their chemical affinities. These range from the suggestion by Schrodinger that quantum fluctuations produce mutations, to the conjecture by Hameroff and Penrose that quantum coherence in microtubules is linked to consciousness. I review some of these claims in this paper, and discuss the serious problem of decoherence. I advance some further conjectures about quantum information processing in bio-systems. Some possible experiments are suggested.Comment: 10 pages, no figures, conference pape
    corecore