145 research outputs found

    Multi-modal surrogates for retrieving and making sense of videos: is synchronization between the multiple modalities optimal?

    Get PDF
    Video surrogates can help people quickly make sense of the content of a video before downloading or seeking more detailed information. Visual and audio features of a video are primary information carriers and might become important components of video retrieval and video sense-making. In the past decades, most research and development efforts on video surrogates have focused on visual features of the video, and comparatively little work has been done on audio surrogates and examining their pros and cons in aiding users' retrieval and sense-making of digital videos. Even less work has been done on multi-modal surrogates, where more than one modality are employed for consuming the surrogates, for example, the audio and visual modalities. This research examined the effectiveness of a number of multi-modal surrogates, and investigated whether synchronization between the audio and visual channels is optimal. A user study was conducted to evaluate six different surrogates on a set of six recognition and inference tasks to answer two main research questions: (1) How do automatically-generated multi-modal surrogates compare to manually-generated ones in video retrieval and video sense-making? and (2) Does synchronization between multiple surrogate channels enhance or inhibit video retrieval and video sense-making? Forty-eight participants participated in the study, in which the surrogates were measured on the the time participants spent on experiencing the surrogates, the time participants spent on doing the tasks, participants' performance accuracy on the tasks, participants' confidence in their task responses, and participants' subjective ratings on the surrogates. On average, the uncoordinated surrogates were more helpful than the coordinated ones, but the manually-generated surrogates were only more helpful than the automatically-generated ones in terms of task completion time. Participants' subjective ratings were more favorable for the coordinated surrogate C2 (Magic A + V) and the uncoordinated surrogate U1 (Magic A + Storyboard V) with respect to usefulness, usability, enjoyment, and engagement. The post-session questionnaire comments demonstrated participants' preference for the coordinated surrogates, but the comments also revealed the value of having uncoordinated sensory channels

    Sketch-Based Annotation and Visualization in Video Authoring

    Full text link

    Knowledge media technologies: first International Core-to-Core Workshop

    Get PDF

    A Fuzzy Logic-Based System for Soccer Video Scenes Classification

    Get PDF
    Massive global video surveillance worldwide captures data but lacks detailed activity information to flag events of interest, while the human burden of monitoring video footage is untenable. Artificial intelligence (AI) can be applied to raw video footage to identify and extract required information and summarize it in linguistic formats. Video summarization automation usually involves text-based data such as subtitles, segmenting text and semantics, with little attention to video summarization in the processing of video footage only. Classification problems in recorded videos are often very complex and uncertain due to the dynamic nature of the video sequence and light conditions, background, camera angle, occlusions, indistinguishable scene features, etc. Video scene classification forms the basis of linguistic video summarization, an open research problem with major commercial importance. Soccer video scenes present added challenges due to specific objects and events with similar features (e.g. “people” include audiences, coaches, and players), as well as being constituted from a series of quickly changing and dynamic frames with small inter-frame variations. There is an added difficulty associated with the need to have light weight video classification systems working in real time with massive data sizes. In this thesis, we introduce a novel system based on Interval Type-2 Fuzzy Logic Classification Systems (IT2FLCS) whose parameters are optimized by the Big Bang–Big Crunch (BB-BC) algorithm, which allows for the automatic scenes classification using optimized rules in broadcasted soccer matches video. The type-2 fuzzy logic systems would be unequivocal to present a highly interpretable and transparent model which is very suitable for the handling the encountered uncertainties in video footages and converting the accumulated data to linguistic formats which can be easily stored and analysed. Meanwhile the traditional black box techniques, such as support vector machines (SVMs) and neural networks, do not provide models which could be easily analysed and understood by human users. The BB-BC optimization is a heuristic, population-based evolutionary approach which is characterized by the ease of implementation, fast convergence and low computational cost. We employed the BB-BC to optimize our system parameters of fuzzy logic membership functions and fuzzy rules. Using the BB-BC we are able to balance the system transparency (through generating a small rule set) together with increasing the accuracy of scene classification. Thus, the proposed fuzzy-based system allows achieving relatively high classification accuracy with a small number of rules thus increasing the system interpretability and allowing its real-time processing. The type-2 Fuzzy Logic Classification System (T2FLCS) obtained 87.57% prediction accuracy in the scene classification of our testing group data which is better than the type-1 fuzzy classification system and neural networks counterparts. The BB-BC optimization algorithms decrease the size of rule bases both in T1FLCS and T2FLCS; the T2FLCS finally got 85.716% with reduce rules, outperforming the T1FLCS and neural network counterparts, especially in the “out-of-range data” which validates the T2FLCSs capability to handle the high level of faced uncertainties. We also presented a novel approach based on the scenes classification system combined with the dynamic time warping algorithm to implement the video events detection for real world processing. The proposed system could run on recorded or live video clips and output a label to describe the event in order to provide the high level summarization of the videos to the user

    Feedback-Based Gameplay Metrics and Gameplay Performance Segmentation: An audio-visual approach for assessing player experience.

    Get PDF
    Gameplay metrics is a method and approach that is growing in popularity amongst the game studies research community for its capacity to assess players’ engagement with game systems. Yet, little has been done, to date, to quantify players’ responses to feedback employed by games that conveys information to players, i.e., their audio-visual streams. The present thesis introduces a novel approach to player experience assessment - termed feedback-based gameplay metrics - which seeks to gather gameplay metrics from the audio-visual feedback streams presented to the player during play. So far, gameplay metrics - quantitative data about a game state and the player's interaction with the game system - are directly logged via the game's source code. The need to utilise source code restricts the range of games that researchers can analyse. By using computer science algorithms for audio-visual processing, yet to be employed for processing gameplay footage, the present thesis seeks to extract similar metrics through the audio-visual streams, thus circumventing the need for access to, whilst also proposing a method that focuses on describing the way gameplay information is broadcast to the player during play. In order to operationalise feedback-based gameplay metrics, the present thesis introduces the concept of gameplay performance segmentation which describes how coherent segments of play can be identified and extracted from lengthy game play sessions. Moreover, in order to both contextualise the method for processing metrics and provide a conceptual framework for analysing the results of a feedback-based gameplay metric segmentation, a multi-layered architecture based on five gameplay concepts (system, game world instance, spatial-temporal, degree of freedom and interaction) is also introduced. Finally, based on data gathered from game play sessions with participants, the present thesis discusses the validity of feedback-based gameplay metrics, gameplay performance segmentation and the multi-layered architecture. A software system has also been specifically developed to produce gameplay summaries based on feedback-based gameplay metrics, and examples of summaries (based on several games) are presented and analysed. The present thesis also demonstrates that feedback-based gameplay metrics can be conjointly analysed with other forms of data (such as biometry) in order to build a more complete picture of game play experience. Feedback based game-play metrics constitutes a post-processing approach that allows the researcher or analyst to explore the data however they wish and as many times as they wish. The method is also able to process any audio-visual file, and can therefore process material from a range of audio-visual sources. This novel methodology brings together game studies and computer sciences by extending the range of games that can now be researched but also to provide a viable solution accounting for the exact way players experience games

    Automatic understanding of multimodal content for Web-based learning

    Get PDF
    Web-based learning has become an integral part of everyday life for all ages and backgrounds. On the one hand, the advantages of this learning type, such as availability, accessibility, flexibility, and cost, are apparent. On the other hand, the oversupply of content can lead to learners struggling to find optimal resources efficiently. The interdisciplinary research field Search as Learning is concerned with the analysis and improvement of Web-based learning processes, both on the learner and the computer science side. So far, automatic approaches that assess and recommend learning resources in Search as Learning (SAL) focus on textual, resource, and behavioral features. However, these approaches commonly ignore multimodal aspects. This work addresses this research gap by proposing several approaches that address the question of how multimodal retrieval methods can help support learning on the Web. First, we evaluate whether textual metadata of the TIB AV-Portal can be exploited and enriched by semantic word embeddings to generate video recommendations and, in addition, a video summarization technique to improve exploratory search. Then we turn to the challenging task of knowledge gain prediction that estimates the potential learning success given a specific learning resource. We used data from two user studies for our approaches. The first one observes the knowledge gain when learning with videos in a Massive Open Online Course (MOOC) setting, while the second one provides an informal Web-based learning setting where the subjects have unrestricted access to the Internet. We then extend the purely textual features to include visual, audio, and cross-modal features for a holistic representation of learning resources. By correlating these features with the achieved knowledge gain, we can estimate the impact of a particular learning resource on learning success. We further investigate the influence of multimodal data on the learning process by examining how the combination of visual and textual content generally conveys information. For this purpose, we draw on work from linguistics and visual communications, which investigated the relationship between image and text by means of different metrics and categorizations for several decades. We concretize these metrics to enable their compatibility for machine learning purposes. This process includes the derivation of semantic image-text classes from these metrics. We evaluate all proposals with comprehensive experiments and discuss their impacts and limitations at the end of the thesis.Web-basiertes Lernen ist ein fester Bestandteil des Alltags aller Alters- und Bevölkerungsschichten geworden. Einerseits liegen die Vorteile dieser Art des Lernens wie Verfügbarkeit, Zugänglichkeit, Flexibilität oder Kosten auf der Hand. Andererseits kann das Überangebot an Inhalten auch dazu führen, dass Lernende nicht in der Lage sind optimale Ressourcen effizient zu finden. Das interdisziplinäre Forschungsfeld Search as Learning beschäftigt sich mit der Analyse und Verbesserung von Web-basierten Lernprozessen. Bisher sind automatische Ansätze bei der Bewertung und Empfehlung von Lernressourcen fokussiert auf monomodale Merkmale, wie Text oder Dokumentstruktur. Die multimodale Betrachtung ist hingegen noch nicht ausreichend erforscht. Daher befasst sich diese Arbeit mit der Frage wie Methoden des Multimedia Retrievals dazu beitragen können das Lernen im Web zu unterstützen. Zunächst wird evaluiert, ob textuelle Metadaten des TIB AV-Portals genutzt werden können um in Verbindung mit semantischen Worteinbettungen einerseits Videoempfehlungen zu generieren und andererseits Visualisierungen zur Inhaltszusammenfassung von Videos abzuleiten. Anschließend wenden wir uns der anspruchsvollen Aufgabe der Vorhersage des Wissenszuwachses zu, die den potenziellen Lernerfolg einer Lernressource schätzt. Wir haben für unsere Ansätze Daten aus zwei Nutzerstudien verwendet. In der ersten wird der Wissenszuwachs beim Lernen mit Videos in einem MOOC-Setting beobachtet, während die zweite eine informelle web-basierte Lernumgebung bietet, in der die Probanden uneingeschränkten Internetzugang haben. Anschließend erweitern wir die rein textuellen Merkmale um visuelle, akustische und cross-modale Merkmale für eine ganzheitliche Darstellung der Lernressourcen. Durch die Korrelation dieser Merkmale mit dem erzielten Wissenszuwachs können wir den Einfluss einer Lernressource auf den Lernerfolg vorhersagen. Weiterhin untersuchen wir wie verschiedene Kombinationen von visuellen und textuellen Inhalten Informationen generell vermitteln. Dazu greifen wir auf Arbeiten aus der Linguistik und der visuellen Kommunikation zurück, die seit mehreren Jahrzehnten die Beziehung zwischen Bild und Text untersucht haben. Wir konkretisieren vorhandene Metriken, um ihre Verwendung für maschinelles Lernen zu ermöglichen. Dieser Prozess beinhaltet die Ableitung semantischer Bild-Text-Klassen. Wir evaluieren alle Ansätze mit umfangreichen Experimenten und diskutieren ihre Auswirkungen und Limitierungen am Ende der Arbeit

    Asynchronous Visualization of Spatiotemporal Information for Multiple Moving Targets

    Get PDF
    In the modern information age, the quantity and complexity of spatiotemporal data is increasing both rapidly and continuously. Sensor systems with multiple feeds that gather multidimensional spatiotemporal data will result in information clusters and overload, as well as a high cognitive load for users of these systems. To meet future safety-critical situations and enhance time-critical decision-making missions in dynamic environments, and to support the easy and effective managing, browsing, and searching of spatiotemporal data in a dynamic environment, we propose an asynchronous, scalable, and comprehensive spatiotemporal data organization, display, and interaction method that allows operators to navigate through spatiotemporal information rather than through the environments being examined, and to maintain all necessary global and local situation awareness. To empirically prove the viability of our approach, we developed the Event-Lens system, which generates asynchronous prioritized images to provide the operator with a manageable, comprehensive view of the information that is collected by multiple sensors. The user study and interaction mode experiments were designed and conducted. The Event-Lens system was discovered to have a consistent advantage in multiple moving-target marking-task performance measures. It was also found that participants’ attentional control, spatial ability, and action video gaming experience affected their overall performance

    Feature based dynamic intra-video indexing

    Get PDF
    A thesis submitted in partial fulfillment for the degree of Doctor of PhilosophyWith the advent of digital imagery and its wide spread application in all vistas of life, it has become an important component in the world of communication. Video content ranging from broadcast news, sports, personal videos, surveillance, movies and entertainment and similar domains is increasing exponentially in quantity and it is becoming a challenge to retrieve content of interest from the corpora. This has led to an increased interest amongst the researchers to investigate concepts of video structure analysis, feature extraction, content annotation, tagging, video indexing, querying and retrieval to fulfil the requirements. However, most of the previous work is confined within specific domain and constrained by the quality, processing and storage capabilities. This thesis presents a novel framework agglomerating the established approaches from feature extraction to browsing in one system of content based video retrieval. The proposed framework significantly fills the gap identified while satisfying the imposed constraints of processing, storage, quality and retrieval times. The output entails a framework, methodology and prototype application to allow the user to efficiently and effectively retrieved content of interest such as age, gender and activity by specifying the relevant query. Experiments have shown plausible results with an average precision and recall of 0.91 and 0.92 respectively for face detection using Haar wavelets based approach. Precision of age ranges from 0.82 to 0.91 and recall from 0.78 to 0.84. The recognition of gender gives better precision with males (0.89) compared to females while recall gives a higher value with females (0.92). Activity of the subject has been detected using Hough transform and classified using Hiddell Markov Model. A comprehensive dataset to support similar studies has also been developed as part of the research process. A Graphical User Interface (GUI) providing a friendly and intuitive interface has been integrated into the developed system to facilitate the retrieval process. The comparison results of the intraclass correlation coefficient (ICC) shows that the performance of the system closely resembles with that of the human annotator. The performance has been optimised for time and error rate
    corecore