492 research outputs found

    An ontological framework for the formal representation and management of human stress knowledge

    Get PDF
    There is a great deal of information on the topic of human stress which is embedded within numerous papers across various databases. However, this information is stored, retrieved, and used often discretely and dispersedly. As a result, discovery and identification of the links and interrelatedness between different aspects of knowledge on stress is difficult. This restricts the effective search and retrieval of desired information. There is a need to organize this knowledge under a unifying framework, linking and analysing it in mutual combinations so that we can obtain an inclusive view of the related phenomena and new knowledge can emerge. Furthermore, there is a need to establish evidence-based and evolving relationships between the ontology concepts.Previous efforts to classify and organize stress-related phenomena have not been sufficiently inclusive and none of them has considered the use of ontology as an effective facilitating tool for the abovementioned issues.There have also been some research works on the evolution and refinement of ontology concepts and relationships. However, these fail to provide any proposals for an automatic and systematic methodology with the capacity to establish evidence-based/evolving ontology relationships.In response to these needs, we have developed the Human Stress Ontology (HSO), a formal framework which specifies, organizes, and represents the domain knowledge of human stress. This machine-readable knowledge model is likely to help researchers and clinicians find theoretical relationships between different concepts, resulting in a better understanding of the human stress domain and its related areas. The HSO is formalized using OWL language and Protégé tool.With respect to the evolution and evidentiality of ontology relationships in the HSO and other scientific ontologies, we have proposed the Evidence-Based Evolving Ontology (EBEO), a methodology for the refinement and evolution of ontology relationships based on the evidence gleaned from scientific literature. The EBEO is based on the implementation of a Fuzzy Inference System (FIS).Our evaluation results showed that almost all stress-related concepts of the sample articles can be placed under one or more category of the HSO. Nevertheless, there were a number of limitations in this work which need to be addressed in future undertakings.The developed ontology has the potential to be used for different data integration and interoperation purposes in the domain of human stress. It can also be regarded as a foundation for the future development of semantic search engines in the stress domain

    24th International Conference on Information Modelling and Knowledge Bases

    Get PDF
    In the last three decades information modelling and knowledge bases have become essentially important subjects not only in academic communities related to information systems and computer science but also in the business area where information technology is applied. The series of European – Japanese Conference on Information Modelling and Knowledge Bases (EJC) originally started as a co-operation initiative between Japan and Finland in 1982. The practical operations were then organised by professor Ohsuga in Japan and professors Hannu Kangassalo and Hannu Jaakkola in Finland (Nordic countries). Geographical scope has expanded to cover Europe and also other countries. Workshop characteristic - discussion, enough time for presentations and limited number of participants (50) / papers (30) - is typical for the conference. Suggested topics include, but are not limited to: 1. Conceptual modelling: Modelling and specification languages; Domain-specific conceptual modelling; Concepts, concept theories and ontologies; Conceptual modelling of large and heterogeneous systems; Conceptual modelling of spatial, temporal and biological data; Methods for developing, validating and communicating conceptual models. 2. Knowledge and information modelling and discovery: Knowledge discovery, knowledge representation and knowledge management; Advanced data mining and analysis methods; Conceptions of knowledge and information; Modelling information requirements; Intelligent information systems; Information recognition and information modelling. 3. Linguistic modelling: Models of HCI; Information delivery to users; Intelligent informal querying; Linguistic foundation of information and knowledge; Fuzzy linguistic models; Philosophical and linguistic foundations of conceptual models. 4. Cross-cultural communication and social computing: Cross-cultural support systems; Integration, evolution and migration of systems; Collaborative societies; Multicultural web-based software systems; Intercultural collaboration and support systems; Social computing, behavioral modeling and prediction. 5. Environmental modelling and engineering: Environmental information systems (architecture); Spatial, temporal and observational information systems; Large-scale environmental systems; Collaborative knowledge base systems; Agent concepts and conceptualisation; Hazard prediction, prevention and steering systems. 6. Multimedia data modelling and systems: Modelling multimedia information and knowledge; Contentbased multimedia data management; Content-based multimedia retrieval; Privacy and context enhancing technologies; Semantics and pragmatics of multimedia data; Metadata for multimedia information systems. Overall we received 56 submissions. After careful evaluation, 16 papers have been selected as long paper, 17 papers as short papers, 5 papers as position papers, and 3 papers for presentation of perspective challenges. We thank all colleagues for their support of this issue of the EJC conference, especially the program committee, the organising committee, and the programme coordination team. The long and the short papers presented in the conference are revised after the conference and published in the Series of “Frontiers in Artificial Intelligence” by IOS Press (Amsterdam). The books “Information Modelling and Knowledge Bases” are edited by the Editing Committee of the conference. We believe that the conference will be productive and fruitful in the advance of research and application of information modelling and knowledge bases. Bernhard Thalheim Hannu Jaakkola Yasushi Kiyok

    Efficient Decision Support Systems

    Get PDF
    This series is directed to diverse managerial professionals who are leading the transformation of individual domains by using expert information and domain knowledge to drive decision support systems (DSSs). The series offers a broad range of subjects addressed in specific areas such as health care, business management, banking, agriculture, environmental improvement, natural resource and spatial management, aviation administration, and hybrid applications of information technology aimed to interdisciplinary issues. This book series is composed of three volumes: Volume 1 consists of general concepts and methodology of DSSs; Volume 2 consists of applications of DSSs in the biomedical domain; Volume 3 consists of hybrid applications of DSSs in multidisciplinary domains. The book is shaped decision support strategies in the new infrastructure that assists the readers in full use of the creative technology to manipulate input data and to transform information into useful decisions for decision makers

    Temporal Dimension of Text: Quantification, Metrics and Features

    Get PDF
    The time dimension is so inherently bound to any information space that it can hardly be ignored when describing the reality, nor can be disregarded in interpreting most information. In the pressing need to search and classify a larger amount of unstructured data with better accuracy, the temporal dimension of text documents is becoming a crucial property for information retrieval and text mining tasks. Of all the features that characterize textual information, the time dimension is still not fully regarded, despite its richness and diversity. Temporal information retrieval is still in its infancy, while time features of documents are barely taken into account in text classification. The temporal aspects of text can be used to better interpret the relative truthiness and the context of old information, and to determine the relevance of a document with respect to information needs and categories. In this research, we first explore the temporal dimension of text collections in a large scale study on more than 30 million documents, quantifying its extent and showing its peculiarities and patterns, such as the relation between the creation time of documents and the mentioned time. Then we define a comprehensive and accurate representation of the temporal aspects of documents, modeling ad-hoc temporal similarities based on metric distances between time intervals. Results of evaluation show taking into account the temporal relevance of documents yields a significant improvement in retrieval effectiveness, over both implicit and explicit time queries, and a gain in classification accuracy when temporal features are involved. By defining a set of temporal features to comprehensively describe the temporal scope of text documents, we show their significant relation to topical categories and how these proposed features are able to categorize documents, improving the text categorization tasks in combination with ordinary terms frequencies features

    Engineering Systems Integration

    Get PDF
    Dreamers may envision our future, but it is the pragmatists who build it. Solve the right problem in the right way, mankind moves forward. Solve the right problem in the wrong way or the wrong problem in the right way, however clever or ingenious the solution, neither credits mankind. Instead, this misfire demonstrates a failure to appreciate a crucial step in pragmatic problem solving: systems integration. The first book to address the underlying premises of systems integration and how to exposit them in a practical and productive manner, Engineering Systems Integration: Theory, Metrics, and Methods looks at the fundamental nature of integration, exposes the subtle premises to achieve integration, and posits a substantial theoretical framework that is both simple and clear. Offering systems managers and systems engineers the framework from which to consider their decisions in light of systems integration metrics, the book isolates two basic questions, 1) Is there a way to express the interplay of human actions and the result of system interactions of a product with its environment?, and 2) Are there methods that combine to improve the integration of systems? The author applies the four axioms of General Systems Theory (holism, decomposition, isomorphism, and models) and explores the domains of history and interpretation to devise a theory of systems integration, develop practical guidance applying the three frameworks, and formulate the mathematical constructs needed for systems integration. The practicalities of integrating parts when we build or analyze systems mandate an analysis and evaluation of existing integrative frameworks of causality and knowledge. Integration is not just a word that describes a best practice, an art, or a single discipline. The act of integrating is an approach, operative in all disciplines, in all we see, in all we do

    Engineering Systems Integration

    Get PDF
    Dreamers may envision our future, but it is the pragmatists who build it. Solve the right problem in the right way, mankind moves forward. Solve the right problem in the wrong way or the wrong problem in the right way, however clever or ingenious the solution, neither credits mankind. Instead, this misfire demonstrates a failure to appreciate a crucial step in pragmatic problem solving: systems integration. The first book to address the underlying premises of systems integration and how to exposit them in a practical and productive manner, Engineering Systems Integration: Theory, Metrics, and Methods looks at the fundamental nature of integration, exposes the subtle premises to achieve integration, and posits a substantial theoretical framework that is both simple and clear. Offering systems managers and systems engineers the framework from which to consider their decisions in light of systems integration metrics, the book isolates two basic questions, 1) Is there a way to express the interplay of human actions and the result of system interactions of a product with its environment?, and 2) Are there methods that combine to improve the integration of systems? The author applies the four axioms of General Systems Theory (holism, decomposition, isomorphism, and models) and explores the domains of history and interpretation to devise a theory of systems integration, develop practical guidance applying the three frameworks, and formulate the mathematical constructs needed for systems integration. The practicalities of integrating parts when we build or analyze systems mandate an analysis and evaluation of existing integrative frameworks of causality and knowledge. Integration is not just a word that describes a best practice, an art, or a single discipline. The act of integrating is an approach, operative in all disciplines, in all we see, in all we do
    • …
    corecore