18,101 research outputs found

    Lessons Learned from a Decade of Providing Interactive, On-Demand High Performance Computing to Scientists and Engineers

    Full text link
    For decades, the use of HPC systems was limited to those in the physical sciences who had mastered their domain in conjunction with a deep understanding of HPC architectures and algorithms. During these same decades, consumer computing device advances produced tablets and smartphones that allow millions of children to interactively develop and share code projects across the globe. As the HPC community faces the challenges associated with guiding researchers from disciplines using high productivity interactive tools to effective use of HPC systems, it seems appropriate to revisit the assumptions surrounding the necessary skills required for access to large computational systems. For over a decade, MIT Lincoln Laboratory has been supporting interactive, on-demand high performance computing by seamlessly integrating familiar high productivity tools to provide users with an increased number of design turns, rapid prototyping capability, and faster time to insight. In this paper, we discuss the lessons learned while supporting interactive, on-demand high performance computing from the perspectives of the users and the team supporting the users and the system. Building on these lessons, we present an overview of current needs and the technical solutions we are building to lower the barrier to entry for new users from the humanities, social, and biological sciences.Comment: 15 pages, 3 figures, First Workshop on Interactive High Performance Computing (WIHPC) 2018 held in conjunction with ISC High Performance 2018 in Frankfurt, German

    Rapid prototyping and AI programming environments applied to payload modeling

    Get PDF
    This effort focused on using artificial intelligence (AI) programming environments and rapid prototyping to aid in both space flight manned and unmanned payload simulation and training. Significant problems addressed are the large amount of development time required to design and implement just one of these payload simulations and the relative inflexibility of the resulting model to accepting future modification. Results of this effort have suggested that both rapid prototyping and AI programming environments can significantly reduce development time and cost when applied to the domain of payload modeling for crew training. The techniques employed are applicable to a variety of domains where models or simulations are required

    Application and systems software in Ada: Development experiences

    Get PDF
    In its most basic sense software development involves describing the tasks to be solved, including the given objects and the operations to be performed on those objects. Unfortunately, the way people describe objects and operations usually bears little resemblance to source code in most contemporary computer languages. There are two ways around this problem. One is to allow users to describe what they want the computer to do in everyday, typically imprecise English. The PRODOC methodology and software development environment is based on a second more flexible and possibly even easier to use approach. Rather than hiding program structure, PRODOC represents such structure graphically using visual programming techniques. In addition, the program terminology used in PRODOC may be customized so as to match the way human experts in any given application area naturally describe the relevant data and operations. The PRODOC methodology is described in detail

    Designing and evaluating the usability of a machine learning API for rapid prototyping music technology

    Get PDF
    To better support creative software developers and music technologists' needs, and to empower them as machine learning users and innovators, the usability of and developer experience with machine learning tools must be considered and better understood. We review background research on the design and evaluation of application programming interfaces (APIs), with a focus on the domain of machine learning for music technology software development. We present the design rationale for the RAPID-MIX API, an easy-to-use API for rapid prototyping with interactive machine learning, and a usability evaluation study with software developers of music technology. A cognitive dimensions questionnaire was designed and delivered to a group of 12 participants who used the RAPID-MIX API in their software projects, including people who developed systems for personal use and professionals developing software products for music and creative technology companies. The results from the questionnaire indicate that participants found the RAPID-MIX API a machine learning API which is easy to learn and use, fun, and good for rapid prototyping with interactive machine learning. Based on these findings, we present an analysis and characterization of the RAPID-MIX API based on the cognitive dimensions framework, and discuss its design trade-offs and usability issues. We use these insights and our design experience to provide design recommendations for ML APIs for rapid prototyping of music technology. We conclude with a summary of the main insights, a discussion of the merits and challenges of the application of the CDs framework to the evaluation of machine learning APIs, and directions to future work which our research deems valuable

    A rapid prototyping/artificial intelligence approach to space station-era information management and access

    Get PDF
    Applications of rapid prototyping and Artificial Intelligence techniques to problems associated with Space Station-era information management systems are described. In particular, the work is centered on issues related to: (1) intelligent man-machine interfaces applied to scientific data user support, and (2) the requirement that intelligent information management systems (IIMS) be able to efficiently process metadata updates concerning types of data handled. The advanced IIMS represents functional capabilities driven almost entirely by the needs of potential users. Space Station-era scientific data projected to be generated is likely to be significantly greater than data currently processed and analyzed. Information about scientific data must be presented clearly, concisely, and with support features to allow users at all levels of expertise efficient and cost-effective data access. Additionally, mechanisms for allowing more efficient IIMS metadata update processes must be addressed. The work reported covers the following IIMS design aspects: IIMS data and metadata modeling, including the automatic updating of IIMS-contained metadata, IIMS user-system interface considerations, including significant problems associated with remote access, user profiles, and on-line tutorial capabilities, and development of an IIMS query and browse facility, including the capability to deal with spatial information. A working prototype has been developed and is being enhanced

    Product Focused Freeform Fabrication Education

    Get PDF
    Presented in this paper is our experience of teaching freeform fabrication to students at the Missouri University of Science and Technology, and to high school students and teachers. The emphasis of the curriculum is exposing students to rapid product development technologies with the goal of creating awareness to emerging career opportunities in CAD/CAM. Starting from solid modeling, principles of freeform fabrication, to applications of rapid prototyping and manufacturing in industry sponsored product development projects, students can learn in-depth freeform fabrication technologies. Interactive course content with hands-on experience for product development is the key towards the success of the program.Mechanical Engineerin

    Software Design with the Rapid Prototyping Approach

    Get PDF

    Using CamiTK for rapid prototyping of interactive Computer Assisted Medical Intervention applications

    Full text link
    Computer Assisted Medical Intervention (CAMI hereafter) is a complex multi-disciplinary field. CAMI research requires the collaboration of experts in several fields as diverse as medicine, computer science, mathematics, instrumentation, signal processing, mechanics, modeling, automatics, optics, etc

    Ada in AI or AI in Ada. On developing a rationale for integration

    Get PDF
    The use of Ada as an Artificial Intelligence (AI) language is gaining interest in the NASA Community, i.e., by parties who have a need to deploy Knowledge Based-Systems (KBS) compatible with the use of Ada as the software standard for the Space Station. A fair number of KBS and pseudo-KBS implementations in Ada exist today. Currently, no widely used guidelines exist to compare and evaluate these with one another. The lack of guidelines illustrates a fundamental problem inherent in trying to compare and evaluate implementations of any sort in languages that are procedural or imperative in style, such as Ada, with those in languages that are functional in style, such as Lisp. Discussed are the strengths and weakness of using Ada as an AI language and a preliminary analysis provided of factors needed for the development of criteria for the integration of these two families of languages and the environments in which they are implemented. The intent for developing such criteria is to have a logical rationale that may be used to guide the development of Ada tools and methodology to support KBS requirements, and to identify those AI technology components that may most readily and effectively be deployed in Ada

    Capturing flight system test engineering expertise: Lessons learned

    Get PDF
    Within a few years, JPL will be challenged by the most active mission set in history. Concurrently, flight systems are increasingly more complex. Presently, the knowledge to conduct integration and test of spacecraft and large instruments is held by a few key people, each with many years of experience. JPL is in danger of losing a significant amount of this critical expertise, through retirement, during a period when demand for this expertise is rapidly increasing. The most critical issue at hand is to collect and retain this expertise and develop tools that would ensure the ability to successfully perform the integration and test of future spacecraft and large instruments. The proposed solution was to capture and codity a subset of existing knowledge, and to utilize this captured expertise in knowledge-based systems. First year results and activities planned for the second year of this on-going effort are described. Topics discussed include lessons learned in knowledge acquisition and elicitation techniques, life-cycle paradigms, and rapid prototyping of a knowledge-based advisor (Spacecraft Test Assistant) and a hypermedia browser (Test Engineering Browser). The prototype Spacecraft Test Assistant supports a subset of integration and test activities for flight systems. Browser is a hypermedia tool that allows users easy perusal of spacecraft test topics. A knowledge acquisition tool called ConceptFinder which was developed to search through large volumes of data for related concepts is also described and is modified to semi-automate the process of creating hypertext links
    • …
    corecore