135,714 research outputs found

    Information and Experience in Metaphor: A Perspective From Computer Analysis

    Get PDF
    Novel linguistic metaphor can be seen as the assignment of attributes to a topic through a vehicle belonging to another domain. The experience evoked by the vehicle is a significant aspect of the meaning of the metaphor, especially for abstract metaphor, which involves more than mere physical similarity. In this article I indicate, through description of a specific model, some possibilities as well as limitations of computer processing directed toward both informative and experiential/affective aspects of metaphor. A background to the discussion is given by other computational treatments of metaphor analysis, as well as by some questions about metaphor originating in other disciplines. The approach on which the present metaphor analysis model is based is consistent with a theory of language comprehension that includes both the intent of the originator and the effect on the recipient of the metaphor. The model addresses the dual problem of (a) determining potentially salient properties of the vehicle concept, and (b) defining extensible symbolic representations of such properties, including affective and other connotations. The nature of the linguistic analysis underlying the model suggests how metaphoric expression of experiential components in abstract metaphor is dependent on the nominalization of actions and attributes. The inverse process of undoing such nominalizations in computer analysis of metaphor constitutes a translation of a metaphor to a more literal expression within the metaphor-nonmetaphor dichotomy

    Inference of magnetic fields in inhomogeneous prominences

    Full text link
    Most of the quantitative information about the magnetic field vector in solar prominences comes from the analysis of the Hanle effect acting on lines formed by scattering. As these lines can be of non-negligible optical thickness, it is of interest to study the line formation process further. We investigate the multidimensional effects on the interpretation of spectropolarimetric observations, particularly on the inference of the magnetic field vector. We do this by analyzing the differences between multidimensional models, which involve fully self-consistent radiative transfer computations in the presence of spatial inhomogeneities and velocity fields, and those which rely on simple one-dimensional geometry. We study the formation of a prototype line in ad hoc inhomogeneous, isothermal 2D prominence models. We solve the NLTE polarized line formation problem in the presence of a large-scale oriented magnetic field. The resulting polarized line profiles are then interpreted (i.e. inverted) assuming a simple 1D slab model. We find that differences between input and the inferred magnetic field vector are non-negligible. Namely, we almost universally find that the inferred field is weaker and more horizontal than the input field. Spatial inhomogeneities and radiative transfer have a strong effect on scattering line polarization in the optically thick lines. In real-life situations, ignoring these effects could lead to a serious misinterpretation of spectropolarimetric observations of chromospheric objects such as prominences.Comment: 11 pages, 9 figure

    Inferring Acceptance and Rejection in Dialogue by Default Rules of Inference

    Full text link
    This paper discusses the processes by which conversants in a dialogue can infer whether their assertions and proposals have been accepted or rejected by their conversational partners. It expands on previous work by showing that logical consistency is a necessary indicator of acceptance, but that it is not sufficient, and that logical inconsistency is sufficient as an indicator of rejection, but it is not necessary. I show how conversants can use information structure and prosody as well as logical reasoning in distinguishing between acceptances and logically consistent rejections, and relate this work to previous work on implicature and default reasoning by introducing three new classes of rejection: {\sc implicature rejections}, {\sc epistemic rejections} and {\sc deliberation rejections}. I show how these rejections are inferred as a result of default inferences, which, by other analyses, would have been blocked by the context. In order to account for these facts, I propose a model of the common ground that allows these default inferences to go through, and show how the model, originally proposed to account for the various forms of acceptance, can also model all types of rejection.Comment: 37 pages, uses fullpage, lingmacros, name

    Flexibly Instructable Agents

    Full text link
    This paper presents an approach to learning from situated, interactive tutorial instruction within an ongoing agent. Tutorial instruction is a flexible (and thus powerful) paradigm for teaching tasks because it allows an instructor to communicate whatever types of knowledge an agent might need in whatever situations might arise. To support this flexibility, however, the agent must be able to learn multiple kinds of knowledge from a broad range of instructional interactions. Our approach, called situated explanation, achieves such learning through a combination of analytic and inductive techniques. It combines a form of explanation-based learning that is situated for each instruction with a full suite of contextually guided responses to incomplete explanations. The approach is implemented in an agent called Instructo-Soar that learns hierarchies of new tasks and other domain knowledge from interactive natural language instructions. Instructo-Soar meets three key requirements of flexible instructability that distinguish it from previous systems: (1) it can take known or unknown commands at any instruction point; (2) it can handle instructions that apply to either its current situation or to a hypothetical situation specified in language (as in, for instance, conditional instructions); and (3) it can learn, from instructions, each class of knowledge it uses to perform tasks.Comment: See http://www.jair.org/ for any accompanying file

    Space exploration: The interstellar goal and Titan demonstration

    Get PDF
    Automated interstellar space exploration is reviewed. The Titan demonstration mission is discussed. Remote sensing and automated modeling are considered. Nuclear electric propulsion, main orbiting spacecraft, lander/rover, subsatellites, atmospheric probes, powered air vehicles, and a surface science network comprise mission component concepts. Machine, intelligence in space exploration is discussed

    Technology assessment of advanced automation for space missions

    Get PDF
    Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology
    corecore