2,295 research outputs found

    Observation of vortex-nucleated magnetization reversal in individual ferromagnetic nanotubes

    Get PDF
    The reversal of a uniform axial magnetization in a ferromagnetic nanotube (FNT) has been predicted to nucleate and propagate through vortex domains forming at the ends. In dynamic cantilever magnetometry measurements of individual FNTs, we identify the entry of these vortices as a function of applied magnetic field and show that they mark the nucleation of magnetization reversal. We find that the entry field depends sensitively on the angle between the end surface of the FNT and the applied field. Micromagnetic simulations substantiate the experimental results and highlight the importance of the ends in determining the reversal process. The control over end vortex formation enabled by our findings is promising for the production of FNTs with tailored reversal properties.Comment: 20 pages, 13 figure

    The History of Photovoltaics with Emphasis on CdTe Solar Cells and Modules

    Get PDF
    Among thin-film photovoltaic technology, cadmium telluride (CdTe) has achieved a truly impressive development that can commercially compete with silicon, which is still the king of the market. Solar cells made on a laboratory scale have reached efficiencies close to 22%, while modules made with fully automated in-line machines show efficiencies above 18%. This success represents the result of over 40 years of research, which led to effective and consolidated production processes. Based on a large literature survey on photovoltaics and on the results of research developed in our laboratories, we present the fabrication processes of both CdTe polycrystalline thin-film solar cells and photovoltaic modules. The most common substrates, the constituent layers, their interaction, the interfaces and the different “tricks” necessary to obtain highly efficient devices will be analyzed. A realistic industrial production process will be analytically described. Moreover, environmental aspects, end-of-life recycling and the life cycle assessment of CdTe-based modules will be deepened and discussed

    Single-photon detectors integrated in quantum photonic circuits

    Get PDF
    Toward photonic circuits for quantum computer

    SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates

    Full text link
    The lack of reliable methods for identifying descriptors - the sets of parameters capturing the underlying mechanisms of a materials property - is one of the key factors hindering efficient materials development. Here, we propose a systematic approach for discovering descriptors for materials properties, within the framework of compressed-sensing based dimensionality reduction. SISSO (sure independence screening and sparsifying operator) tackles immense and correlated features spaces, and converges to the optimal solution from a combination of features relevant to the materials' property of interest. In addition, SISSO gives stable results also with small training sets. The methodology is benchmarked with the quantitative prediction of the ground-state enthalpies of octet binary materials (using ab initio data) and applied to the showcase example of predicting the metal/insulator classification of binaries (with experimental data). Accurate, predictive models are found in both cases. For the metal-insulator classification model, the predictive capability are tested beyond the training data: It rediscovers the available pressure-induced insulator->metal transitions and it allows for the prediction of yet unknown transition candidates, ripe for experimental validation. As a step forward with respect to previous model-identification methods, SISSO can become an effective tool for automatic materials development.Comment: 11 pages, 5 figures, in press in Phys. Rev. Material

    Commercial Aspects of Epitaxial Thin Film Growth in Outer Space

    Get PDF
    A new concept for materials processing in space exploits the ultra vacuum component of space for thin film epitaxial growth. The unique low earth orbit space environment is expected to yield 10~14 torr or better pressures, semi-infinite pumping speeds and large ultra vacuum volume (~100 m3) without walls. These space ultra vacuum properties promise major improvement in the quality, unique nature, and the throughput of epitaxially grown materials especially in the area of semiconductors for microelectronics use. For such thin film materials there is expected a very large value added from space ultra vacuum processing, and as a result the application of the epitaxial thin film growth technology to space could lead to major commercial efforts in space

    Proceedings of the Cold Electronics Workshop

    Get PDF
    The benefits and problems of the use of cold semiconductor electronics and the research and development effort required to bring cold electronics into more widespread use were examined

    Demonstration of Low Emittance in the Cornell Energy Recovery Linac Injector Prototype

    Full text link
    We present a detailed study of the six-dimensional phase space of the electron beam produced by the Cornell Energy Recovery Linac Photoinjector, a high-brightness, high repetition rate (1.3 GHz) DC photoemission source designed to drive a hard x-ray energy recovery linac (ERL). A complete simulation model of the injector has been constructed, verified by measurement, and optimized. Both the horizontal and vertical 2D transverse phase spaces, as well as the time-resolved (sliced) horizontal phase space, were simulated and directly measured at the end of the injector for 19 pC and 77 pC bunches at roughly 8 MeV. These bunch charges were chosen because they correspond to 25 mA and 100 mA average current if operating at the full 1.3 GHz repetition rate. The resulting 90% normalized transverse emittances for 19 (77) pC/bunch were 0.23 +/- 0.02 (0.51 +/- 0.04) microns in the horizontal plane, and 0.14 +/- 0.01 (0.29 +/- 0.02) microns in the vertical plane, respectively. These emittances were measured with a corresponding bunch length of 2.1 +/- 0.1 (3.0 +/- 0.2) ps, respectively. In each case the rms momentum spread was determined to be on the order of 1e-3. Excellent overall agreement between measurement and simulation has been demonstrated. Using the emittances and bunch length measured at 19 pC/bunch, we estimate the electron beam quality in a 1.3 GHz, 5 GeV hard x-ray ERL to be at least a factor of 20 times better than that of existing storage rings when the rms energy spread of each device is considered. These results represent a milestone for the field of high-brightness, high-current photoinjectors.Comment: Physical Review Special Topics - Accelerators and Beams 16, 073401 (2013
    corecore